These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10372183)

  • 1. Evaluation of impedance technique for detecting breast carcinoma using a 2-D numerical model of the torso.
    Radai MM; Abboud S; Rosenfeld M
    Ann N Y Acad Sci; 1999 Apr; 873():360-9. PubMed ID: 10372183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modelling of biopotential field for detection of breast tumour.
    Ng EY; Ng WK; Sim LS; Rajendra Acharya U
    Comput Biol Med; 2007 Aug; 37(8):1121-32. PubMed ID: 17145053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies.
    Glidewell ME; Ng KT
    IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations and phantom evaluations of magnetic resonance electrical impedance tomography (MREIT) for breast cancer detection.
    Sadleir RJ; Sajib SZ; Kim HJ; Kwon OI; Woo EJ
    J Magn Reson; 2013 May; 230():40-9. PubMed ID: 23435264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofield potential simulation as a novel adjunt modality for continuous monitoring of breast lesions: a 3D numerical model.
    Ng EY; Ng WK; Acharya UR
    J Med Eng Technol; 2008; 32(1):40-52. PubMed ID: 18183519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric study of the biopotential equation for breast tumour identification using ANOVA and Taguchi method.
    Ng EY; Ng WK
    Med Biol Eng Comput; 2006 Mar; 44(1-2):131-9. PubMed ID: 16929931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of magnetic resonance imaging data and the inclusion of anisotropic regions in electrical impedance tomography.
    Glidewell ME; Ng KT
    Biomed Sci Instrum; 1993; 29():251-7. PubMed ID: 8329598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Extraction of Tumor Response Based on Ensemble Empirical Mode Decomposition for Image Reconstruction of Early Breast Cancer Detection by UWB.
    Li Q; Xiao X; Wang L; Song H; Kono H; Liu P; Lu H; Kikkawa T
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):710-24. PubMed ID: 26552095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario.
    Güren O; Çayören M; Ergene LT; Akduman I
    Phys Med Biol; 2014 Oct; 59(19):5725-39. PubMed ID: 25198056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe.
    Ramos A; Bertemes-Filho P
    Electromagn Biol Med; 2011 Dec; 30(4):235-45. PubMed ID: 22047461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system.
    Seo JK; Kwon O; Ammari H; Woo EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1898-906. PubMed ID: 15536891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography.
    Lee BI; Oh SH; Kim TS; Woo EJ; Lee SY; Kwon O; Seo JK
    Phys Med Biol; 2006 Jan; 51(2):443-55. PubMed ID: 16394349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the no-sampling linear sampling method to breast cancer detection.
    Bozza G; Brignone M; Pastorino M
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2525-34. PubMed ID: 20595076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution and contrast in magnetic resonance electrical impedance tomography (MREIT) and its application to cancer imaging.
    Muftuler LT; Hamamura M; Birgul O; Nalcioglu O
    Technol Cancer Res Treat; 2004 Dec; 3(6):599-609. PubMed ID: 15560718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for analyzing electrical impedance spectroscopy data from breast cancer patients.
    Kim BS; Isaacson D; Xia H; Kao TJ; Newell JC; Saulnier GJ
    Physiol Meas; 2007 Jul; 28(7):S237-46. PubMed ID: 17664638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance electrical properties tomography for small anomalies using boundary conditions: A simulation study.
    Lee J; Choi N; Seo JK; Kim DH
    Med Phys; 2017 Sep; 44(9):4773-4785. PubMed ID: 28508476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data.
    Scholz B
    IEEE Trans Med Imaging; 2002 Jun; 21(6):588-95. PubMed ID: 12166854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.