These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10372573)

  • 1. Is digital dexterity really related to corticospinal projections?: a re-analysis of the Heffner and Masterton data set using modern comparative statistics.
    Iwaniuk AN; Pellis SM; Whishaw IQ
    Behav Brain Res; 1999 Jun; 101(2):173-87. PubMed ID: 10372573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending pathways to the spinal cord, IV: Some factors related to the amount of cortex devoted to the corticospinal tract.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1990 Jun; 296(4):584-97. PubMed ID: 2113541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the corticospinal tract in the evolution of human digital dexterity.
    Heffner RS; Masterton RB
    Brain Behav Evol; 1983; 23(3-4):165-83. PubMed ID: 6667369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyramidal tract and corticospinal neurons with branching axons to the dorsal column nuclei of the cat.
    Martinez L; Lamas JA; Canedo A
    Neuroscience; 1995 Sep; 68(1):195-206. PubMed ID: 7477925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation and evolution of mammalian corticospinal somata with special reference to primates.
    Nudo RJ; Sutherland DP; Masterton RB
    J Comp Neurol; 1995 Jul; 358(2):181-205. PubMed ID: 7560281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between impaired dexterity and corticospinal tract dysgenesis in congenital hemiplegia.
    Duque J; Thonnard JL; Vandermeeren Y; Sébire G; Cosnard G; Olivier E
    Brain; 2003 Mar; 126(Pt 3):732-47. PubMed ID: 12566293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in form of the pyramidal tract and its relationship to digital dexterity.
    Heffner R; Masterton B
    Brain Behav Evol; 1975; 12(3):161-200. PubMed ID: 1212616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The pyramidal tract. Recent anatomic and physiologic findings].
    Armand J
    Rev Neurol (Paris); 1984; 140(5):309-29. PubMed ID: 6379818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in our understanding of the primate corticospinal system.
    Lemon R
    F1000Res; 2019; 8():. PubMed ID: 30906528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species.
    Nakajima K; Maier MA; Kirkwood PA; Lemon RN
    J Neurophysiol; 2000 Aug; 84(2):698-709. PubMed ID: 10938297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study.
    Lacroix S; Havton LA; McKay H; Yang H; Brant A; Roberts J; Tuszynski MH
    J Comp Neurol; 2004 May; 473(2):147-61. PubMed ID: 15101086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origins of descending spinal pathways in prehensile birds: do parrots have a homologue to the corticospinal tract of mammals?
    Webster DM; Rogers LJ; Pettigrew JD; Steeves JD
    Brain Behav Evol; 1990; 36(4):216-26. PubMed ID: 2279235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization?
    Lemon RN; Griffiths J
    Muscle Nerve; 2005 Sep; 32(3):261-79. PubMed ID: 15806550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel pathways mediating manual dexterity in the macaque.
    Darian-Smith I; Burman K; Darian-Smith C
    Exp Brain Res; 1999 Sep; 128(1-2):101-8. PubMed ID: 10473747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin, course and terminations of corticospinal fibers in various mammals.
    Armand J
    Prog Brain Res; 1982; 57():329-60. PubMed ID: 7156398
    [No Abstract]   [Full Text] [Related]  

  • 16. Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate.
    Lemon RN; Kirkwood PA; Maier MA; Nakajima K; Nathan P
    Prog Brain Res; 2004; 143():263-79. PubMed ID: 14653171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal maturation of the direct corticospinal projections in the macaque monkey.
    Galea MP; Darian-Smith I
    Cereb Cortex; 1995; 5(6):518-40. PubMed ID: 8590825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraint-induced movement therapy improves efficacy of task-specific training after severe cortical stroke depending on the ipsilesional corticospinal projections.
    Okabe N; Himi N; Nakamura-Maruyama E; Hayashi N; Sakamoto I; Narita K; Hasegawa T; Miyamoto O
    Exp Neurol; 2018 Jul; 305():108-120. PubMed ID: 29653186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pericruciate fibres to the red nucleus and to the medial bulbar reticular formation.
    Lamas JA; Martinez L; Canedo A
    Neuroscience; 1994 Sep; 62(1):115-24. PubMed ID: 7816194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The corticospinal tracts in man. Course and location of fibres at different segmental levels.
    Nathan PW; Smith MC; Deacon P
    Brain; 1990 Apr; 113 ( Pt 2)():303-24. PubMed ID: 2328407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.