BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 10373005)

  • 1. Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions.
    De Beuckeleer K; Volckaert G; Engelborghs Y
    Proteins; 1999 Jul; 36(1):42-53. PubMed ID: 10373005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine-related pH dependence.
    Loewenthal R; Sancho J; Fersht AR
    Biochemistry; 1991 Jul; 30(27):6775-9. PubMed ID: 2065058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence studies with trp repressor and its single-tryptophan mutants.
    Eftink MR; Ramsay GD; Burns L; Maki AH; Mann CJ; Matthews CR; Ghiron CA
    Biochemistry; 1993 Sep; 32(35):9189-98. PubMed ID: 8369286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants.
    Willaert K; Loewenthal R; Sancho J; Froeyen M; Fersht A; Engelborghs Y
    Biochemistry; 1992 Jan; 31(3):711-6. PubMed ID: 1731927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability.
    Loewenthal R; Sancho J; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):759-70. PubMed ID: 1569555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of thermostability and structure of close homologues--barnase and binase.
    Makarov AA; Protasevich II; Kuznetsova NV; Fedorov BB; Korolev SV; Struminskaya NK; Bazhulina NP; Leshchinskaya IB; Hartley RW; Kirpichnikov MP
    J Biomol Struct Dyn; 1993 Jun; 10(6):1047-65. PubMed ID: 8357541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB
    Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins.
    Gonnelli M; Strambini GB
    Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy atom induced phosphorescence study on the influence of internal structural factors on the photophysics of tryptophan in aqueous solutions.
    Kowalska-Baron A; Gałęcki K; Rożniakowski K; Kolesińska B; Kamiński ZJ; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():830-7. PubMed ID: 24704600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence.
    Kerwin BA; Aoki KH; Gonelli M; Strambini GB
    Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Strambini GB; Gabellieri E; Gonnelli M; Rahuel-Clermont S; Branlant G
    Biophys J; 1998 Jun; 74(6):3165-72. PubMed ID: 9635769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase.
    Mersol JV; Steel DG; Gafni A
    Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.
    Bódis E; Strambini GB; Gonnelli M; Málnási-Csizmadia A; Somogyi B
    Biophys J; 2004 Aug; 87(2):1146-54. PubMed ID: 15298917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved circularly polarized protein phosphorescence.
    Schauerte JA; Steel DG; Gafni A
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10154-8. PubMed ID: 1438204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of phototransformation of phytochrome As probed by intrinsic tryptophan residues.
    Sarkar HK; Song PS
    Biochemistry; 1982 Apr; 21(8):1967-72. PubMed ID: 7082656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual optical resolution of all four tryptophan residues in MPT63 protein by phosphorescence spectroscopy: assignment and significance.
    Ghosh R; Mukherjee M; Chattopadhyay K; Ghosh S
    J Phys Chem B; 2012 Oct; 116(41):12489-500. PubMed ID: 22998652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.