BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 10373108)

  • 1. Structure of the Escherichia coli fumarate reductase respiratory complex.
    Iverson TM; Luna-Chavez C; Cecchini G; Rees DC
    Science; 1999 Jun; 284(5422):1961-6. PubMed ID: 10373108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution.
    Lancaster CR; Kröger A; Auer M; Michel H
    Nature; 1999 Nov; 402(6760):377-85. PubMed ID: 10586875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Succinate: quinone oxidoreductases: new insights from X-ray crystal structures.
    Lancaster CR; Kröger A
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):422-31. PubMed ID: 11004459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain.
    Cecchini G; Sices H; Schröder I; Gunsalus RP
    J Bacteriol; 1995 Aug; 177(16):4587-92. PubMed ID: 7642483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1.
    Leys D; Tsapin AS; Nealson KH; Meyer TE; Cusanovich MA; Van Beeumen JJ
    Nat Struct Biol; 1999 Dec; 6(12):1113-7. PubMed ID: 10581551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of succinate dehydrogenase and reactive oxygen species generation.
    Yankovskaya V; Horsefield R; Törnroth S; Luna-Chavez C; Miyoshi H; Léger C; Byrne B; Cecchini G; Iwata S
    Science; 2003 Jan; 299(5607):700-4. PubMed ID: 12560550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing your complexes: structure of the quinol-fumarate reductase respiratory complex.
    Iverson TM; Luna-Chavez C; Schröder I; Cecchini G; Rees DC
    Curr Opin Struct Biol; 2000 Aug; 10(4):448-55. PubMed ID: 10981634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved lysine residue controls iron-sulfur cluster redox chemistry in Escherichia coli fumarate reductase.
    Cheng VW; Tran QM; Boroumand N; Rothery RA; Maklashina E; Cecchini G; Weiner JH
    Biochim Biophys Acta; 2013 Oct; 1827(10):1141-7. PubMed ID: 23711795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiration without O2.
    Hederstedt L
    Science; 1999 Jun; 284(5422):1941-2. PubMed ID: 10400536
    [No Abstract]   [Full Text] [Related]  

  • 10. The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria.
    Robinson KM; Rothery RA; Weiner JH; Lemire BD
    Eur J Biochem; 1994 Jun; 222(3):983-90. PubMed ID: 8026509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural biology. Complex II is complex too.
    Hederstedt L
    Science; 2003 Jan; 299(5607):671-2. PubMed ID: 12560540
    [No Abstract]   [Full Text] [Related]  

  • 12. Succinate dehydrogenase and fumarate reductase from Escherichia coli.
    Cecchini G; Schröder I; Gunsalus RP; Maklashina E
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):140-57. PubMed ID: 11803023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of maintaining an oxidizing environment under anaerobiosis by soluble fumarate reductase.
    Kim S; Kim CM; Son YJ; Choi JY; Siegenthaler RK; Lee Y; Jang TH; Song J; Kang H; Kaiser CA; Park HH
    Nat Commun; 2018 Nov; 9(1):4867. PubMed ID: 30451826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors.
    Unden G; Bongaerts J
    Biochim Biophys Acta; 1997 Jul; 1320(3):217-34. PubMed ID: 9230919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biochemical analyses reveal insights into covalent flavinylation of the
    Starbird CA; Maklashina E; Sharma P; Qualls-Histed S; Cecchini G; Iverson TM
    J Biol Chem; 2017 Aug; 292(31):12921-12933. PubMed ID: 28615448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction.
    Horsefield R; Yankovskaya V; Sexton G; Whittingham W; Shiomi K; Omura S; Byrne B; Cecchini G; Iwata S
    J Biol Chem; 2006 Mar; 281(11):7309-16. PubMed ID: 16407191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase.
    Cheng VW; Piragasam RS; Rothery RA; Maklashina E; Cecchini G; Weiner JH
    Biochemistry; 2015 Feb; 54(4):1043-52. PubMed ID: 25569225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase.
    Messner KR; Imlay JA
    J Biol Chem; 2002 Nov; 277(45):42563-71. PubMed ID: 12200425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open conformation of a flavocytochrome c3 fumarate reductase.
    Bamford V; Dobbin PS; Richardson DJ; Hemmings AM
    Nat Struct Biol; 1999 Dec; 6(12):1104-7. PubMed ID: 10581549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification, crystallisation and preliminary crystallographic studies of succinate:ubiquinone oxidoreductase from Escherichia coli.
    Törnroth S; Yankovskaya V; Cecchini G; Iwata S
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):171-6. PubMed ID: 11803025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.