BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 10373378)

  • 1. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin.
    Ragusa S; Mouchet P; Lazennec C; Dive V; Meinnel T
    J Mol Biol; 1999 Jun; 289(5):1445-57. PubMed ID: 10373378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of substrate analogue inhibitors of peptide deformylase.
    Meinnel T; Patiny L; Ragusa S; Blanquet S
    Biochemistry; 1999 Apr; 38(14):4287-95. PubMed ID: 10194346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase.
    Meinnel T; Blanquet S; Dardel F
    J Mol Biol; 1996 Sep; 262(3):375-86. PubMed ID: 8845003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of nickel-peptide deformylase.
    Dardel F; Ragusa S; Lazennec C; Blanquet S; Meinnel T
    J Mol Biol; 1998 Jul; 280(3):501-13. PubMed ID: 9665852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of the active site zinc ligands of peptide deformylase.
    Meinnel T; Lazennec C; Blanquet S
    J Mol Biol; 1995 Nov; 254(2):175-83. PubMed ID: 7490741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion.
    Meinnel T; Lazennec C; Villoing S; Blanquet S
    J Mol Biol; 1997 Apr; 267(3):749-61. PubMed ID: 9126850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of substrate specificity for peptide deformylase through the screening of a combinatorial peptide library.
    Hu YJ; Wei Y; Zhou Y; Rajagopalan PT; Pei D
    Biochemistry; 1999 Jan; 38(2):643-50. PubMed ID: 9888804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1.
    Welch AR; Holman CM; Huber M; Brenner MC; Browner MF; Van Wart HE
    Biochemistry; 1996 Aug; 35(31):10103-9. PubMed ID: 8756473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the unusual specificity of Escherichia coli aminopeptidase N.
    Addlagatta A; Gay L; Matthews BW
    Biochemistry; 2008 May; 47(19):5303-11. PubMed ID: 18416562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the Escherichia coli peptide deformylase.
    Chan MK; Gong W; Rajagopalan PT; Hao B; Tsai CM; Pei D
    Biochemistry; 1997 Nov; 36(45):13904-9. PubMed ID: 9374869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron center, substrate recognition and mechanism of peptide deformylase.
    Becker A; Schlichting I; Kabsch W; Groche D; Schultz S; Wagner AF
    Nat Struct Biol; 1998 Dec; 5(12):1053-8. PubMed ID: 9846875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity.
    de Kreij A; van den Burg B; Veltman OR; Vriend G; Venema G; Eijsink VG
    Eur J Biochem; 2001 Sep; 268(18):4985-91. PubMed ID: 11559368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification, characterization, and inhibition of peptide deformylase from Escherichia coli.
    Rajagopalan PT; Datta A; Pei D
    Biochemistry; 1997 Nov; 36(45):13910-8. PubMed ID: 9374870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous spectrophotometric assay of peptide deformylase.
    Wei Y; Pei D
    Anal Biochem; 1997 Jul; 250(1):29-34. PubMed ID: 9234895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme.
    Goto M; Miyahara I; Hayashi H; Kagamiyama H; Hirotsu K
    Biochemistry; 2003 Apr; 42(13):3725-33. PubMed ID: 12667063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening combinatorial libraries for optimal enzyme substrates by mass spectrometry.
    Wang P; Snavley DF; Freitas MA; Pei D
    Rapid Commun Mass Spectrom; 2001; 15(14):1166-71. PubMed ID: 11445898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis.
    Graham SC; Lilley PE; Lee M; Schaeffer PM; Kralicek AV; Dixon NE; Guss JM
    Biochemistry; 2006 Jan; 45(3):964-75. PubMed ID: 16411772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries.
    Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM
    Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel substrate-binding pocket interaction restricts the specificity of the human NK cell-specific serine protease, Met-ase-1.
    Smyth MJ; O'Connor MD; Trapani JA; Kershaw MH; Brinkworth RI
    J Immunol; 1996 Jun; 156(11):4174-81. PubMed ID: 8666785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.