BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10373469)

  • 1. Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike beta-helix domain.
    Schuler B; Rachel R; Seckler R
    J Biol Chem; 1999 Jun; 274(26):18589-96. PubMed ID: 10373469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reversibly unfolding fragment of P22 tailspike protein with native structure: the isolated beta-helix domain.
    Miller S; Schuler B; Seckler R
    Biochemistry; 1998 Jun; 37(25):9160-8. PubMed ID: 9636063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P22 tailspike folding mutants revisited: effects on the thermodynamic stability of the isolated beta-helix domain.
    Schuler B; Seckler R
    J Mol Biol; 1998 Aug; 281(2):227-34. PubMed ID: 9698543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein.
    Seckler R
    J Struct Biol; 1998; 122(1-2):216-22. PubMed ID: 9724623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states.
    Spatara ML; Roberts CJ; Robinson AS
    Biophys Chem; 2009 May; 141(2-3):214-21. PubMed ID: 19258192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity and steric strain in a parallel beta-helix: rational mutations in the P22 tailspike protein.
    Schuler B; Fürst F; Osterroth F; Steinbacher S; Huber R; Seckler R
    Proteins; 2000 Apr; 39(1):89-101. PubMed ID: 10737931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the protrimer intermediate in the folding pathway of the interdigitated beta-helix tailspike protein.
    Benton CB; King J; Clark PL
    Biochemistry; 2002 Apr; 41(16):5093-103. PubMed ID: 11955057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.
    Betts SD; King J
    Protein Sci; 1998 Jul; 7(7):1516-23. PubMed ID: 9684883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies.
    Speed MA; Morshead T; Wang DI; King J
    Protein Sci; 1997 Jan; 6(1):99-108. PubMed ID: 9007981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage.
    Steinbacher S; Miller S; Baxa U; Budisa N; Weintraub A; Seckler R; Huber R
    J Mol Biol; 1997 Apr; 267(4):865-80. PubMed ID: 9135118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tailspike protein of Shigella phage Sf6. A structural homolog of Salmonella phage P22 tailspike protein without sequence similarity in the beta-helix domain.
    Freiberg A; Morona R; Van den Bosch L; Jung C; Behlke J; Carlin N; Seckler R; Baxa U
    J Biol Chem; 2003 Jan; 278(3):1542-8. PubMed ID: 12424253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization.
    Kreisberg JF; Betts SD; Haase-Pettingell C; King J
    Protein Sci; 2002 Apr; 11(4):820-30. PubMed ID: 11910025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes.
    Reich L; Becker M; Seckler R; Weikl TR
    Biophys Chem; 2009 May; 141(2-3):186-92. PubMed ID: 19254821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage P22 tailspike protein: removal of head-binding domain unmasks effects of folding mutations on native-state thermal stability.
    Miller S; Schuler B; Seckler R
    Protein Sci; 1998 Oct; 7(10):2223-32. PubMed ID: 9792111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side-chain specificity at three temperature-sensitive folding mutation sites of P22 tailspike protein.
    Lee SC; Yu MH
    Biochem Biophys Res Commun; 1997 Apr; 233(3):857-62. PubMed ID: 9168948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain.
    Danner M; Fuchs A; Miller S; Seckler R
    Eur J Biochem; 1993 Aug; 215(3):653-61. PubMed ID: 8354271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context.
    Beissinger M; Lee SC; Steinbacher S; Reinemer P; Huber R; Yu MH; Seckler R
    J Mol Biol; 1995 May; 249(1):185-94. PubMed ID: 7776371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins.
    Raso SW; Clark PL; Haase-Pettingell C; King J; Thomas GJ
    J Mol Biol; 2001 Mar; 307(3):899-911. PubMed ID: 11273709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike.
    Betts S; King J
    Structure; 1999 Jun; 7(6):R131-9. PubMed ID: 10404587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure treatment of tailspike aggregates rapidly produces on-pathway folding intermediates.
    Lefebvre BG; Robinson AS
    Biotechnol Bioeng; 2003 Jun; 82(5):595-604. PubMed ID: 12652483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.