These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 10373502)
1. Amino-terminal cysteine residues of RGS16 are required for palmitoylation and modulation of Gi- and Gq-mediated signaling. Druey KM; Ugur O; Caron JM; Chen CK; Backlund PS; Jones TL J Biol Chem; 1999 Jun; 274(26):18836-42. PubMed ID: 10373502 [TBL] [Abstract][Full Text] [Related]
2. Palmitoylation regulates regulators of G-protein signaling (RGS) 16 function. I. Mutation of amino-terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue. Hiol A; Davey PC; Osterhout JL; Waheed AA; Fischer ER; Chen CK; Milligan G; Druey KM; Jones TL J Biol Chem; 2003 May; 278(21):19301-8. PubMed ID: 12642593 [TBL] [Abstract][Full Text] [Related]
3. Palmitoylation regulates regulator of G-protein signaling (RGS) 16 function. II. Palmitoylation of a cysteine residue in the RGS box is critical for RGS16 GTPase accelerating activity and regulation of Gi-coupled signalling. Osterhout JL; Waheed AA; Hiol A; Ward RJ; Davey PC; Nini L; Wang J; Milligan G; Jones TL; Druey KM J Biol Chem; 2003 May; 278(21):19309-16. PubMed ID: 12642592 [TBL] [Abstract][Full Text] [Related]
4. Role of palmitoylation in RGS protein function. Jones TL Methods Enzymol; 2004; 389():33-55. PubMed ID: 15313558 [TBL] [Abstract][Full Text] [Related]
5. Polarity exchange at the interface of regulators of G protein signaling with G protein alpha-subunits. Wieland T; Bahtijari N; Zhou XB; Kleuss C; Simon MI J Biol Chem; 2000 Sep; 275(37):28500-6. PubMed ID: 10878019 [TBL] [Abstract][Full Text] [Related]
6. Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo. Anger T; Zhang W; Mende U J Biol Chem; 2004 Feb; 279(6):3906-15. PubMed ID: 14630933 [TBL] [Abstract][Full Text] [Related]
7. The membrane association domain of RGS16 contains unique amphipathic features that are conserved in RGS4 and RGS5. Chen C; Seow KT; Guo K; Yaw LP; Lin SC J Biol Chem; 1999 Jul; 274(28):19799-806. PubMed ID: 10391923 [TBL] [Abstract][Full Text] [Related]
8. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha). Scheschonka A; Dessauer CW; Sinnarajah S; Chidiac P; Shi CS; Kehrl JH Mol Pharmacol; 2000 Oct; 58(4):719-28. PubMed ID: 10999941 [TBL] [Abstract][Full Text] [Related]
9. The regulators of G protein signaling (RGS) domains of RGS4, RGS10, and GAIP retain GTPase activating protein activity in vitro. Popov S; Yu K; Kozasa T; Wilkie TM Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7216-20. PubMed ID: 9207071 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein alpha subunits. Tu Y; Wang J; Ross EM Science; 1997 Nov; 278(5340):1132-5. PubMed ID: 9353196 [TBL] [Abstract][Full Text] [Related]
11. Modulation of the affinity and selectivity of RGS protein interaction with G alpha subunits by a conserved asparagine/serine residue. Posner BA; Mukhopadhyay S; Tesmer JJ; Gilman AG; Ross EM Biochemistry; 1999 Jun; 38(24):7773-9. PubMed ID: 10387017 [TBL] [Abstract][Full Text] [Related]
12. A single mutation Asp229 --> Ser confers upon Gs alpha the ability to interact with regulators of G protein signaling. Natochin M; Artemyev NO Biochemistry; 1998 Sep; 37(39):13776-80. PubMed ID: 9753466 [TBL] [Abstract][Full Text] [Related]
13. RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Hepler JR; Berman DM; Gilman AG; Kozasa T Proc Natl Acad Sci U S A; 1997 Jan; 94(2):428-32. PubMed ID: 9012799 [TBL] [Abstract][Full Text] [Related]
14. Two RGS proteins that inhibit Galpha(o) and Galpha(q) signaling in C. elegans neurons require a Gbeta(5)-like subunit for function. Chase DL; Patikoglou GA; Koelle MR Curr Biol; 2001 Feb; 11(4):222-31. PubMed ID: 11250150 [TBL] [Abstract][Full Text] [Related]
15. Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. Tu Y; Popov S; Slaughter C; Ross EM J Biol Chem; 1999 Dec; 274(53):38260-7. PubMed ID: 10608901 [TBL] [Abstract][Full Text] [Related]
17. Cytoplasmic, nuclear, and golgi localization of RGS proteins. Evidence for N-terminal and RGS domain sequences as intracellular targeting motifs. Chatterjee TK; Fisher RA J Biol Chem; 2000 Aug; 275(31):24013-21. PubMed ID: 10791963 [TBL] [Abstract][Full Text] [Related]
18. Palmitoylation and plasma membrane targeting of RGS7 are promoted by alpha o. Takida S; Fischer CC; Wedegaertner PB Mol Pharmacol; 2005 Jan; 67(1):132-9. PubMed ID: 15496508 [TBL] [Abstract][Full Text] [Related]
19. Differential capacities of the RGS1, RGS16 and RGS-GAIP regulators of G protein signaling to enhance alpha2A-adrenoreceptor agonist-stimulated GTPase activity of G(o1)alpha. Hoffmann M; Ward RJ; Cavalli A; Carr IC; Milligan G J Neurochem; 2001 Aug; 78(4):797-806. PubMed ID: 11520900 [TBL] [Abstract][Full Text] [Related]
20. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Berman DM; Wilkie TM; Gilman AG Cell; 1996 Aug; 86(3):445-52. PubMed ID: 8756726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]