BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10373581)

  • 1. Post-translational control of the MEF2A transcriptional regulatory protein.
    Ornatsky OI; Cox DM; Tangirala P; Andreucci JJ; Quinn ZA; Wrana JL; Prywes R; Yu YT; McDermott JC
    Nucleic Acids Res; 1999 Jul; 27(13):2646-54. PubMed ID: 10373581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the MEF2 family of transcription factors by p38.
    Zhao M; New L; Kravchenko VV; Kato Y; Gram H; di Padova F; Olson EN; Ulevitch RJ; Han J
    Mol Cell Biol; 1999 Jan; 19(1):21-30. PubMed ID: 9858528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors.
    Yang SH; Galanis A; Sharrocks AD
    Mol Cell Biol; 1999 Jun; 19(6):4028-38. PubMed ID: 10330143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins.
    Quinn ZA; Yang CC; Wrana JL; McDermott JC
    Nucleic Acids Res; 2001 Feb; 29(3):732-42. PubMed ID: 11160896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps.
    Wu Z; Woodring PJ; Bhakta KS; Tamura K; Wen F; Feramisco JR; Karin M; Wang JY; Puri PL
    Mol Cell Biol; 2000 Jun; 20(11):3951-64. PubMed ID: 10805738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle.
    Dionyssiou MG; Nowacki NB; Hashemi S; Zhao J; Kerr A; Tsushima RG; McDermott JC
    J Mol Cell Cardiol; 2013 Jan; 54():35-44. PubMed ID: 23137781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A.
    Cox DM; Du M; Marback M; Yang EC; Chan J; Siu KW; McDermott JC
    J Biol Chem; 2003 Apr; 278(17):15297-303. PubMed ID: 12586839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1.
    Yang CC; Ornatsky OI; McDermott JC; Cruz TF; Prody CA
    Nucleic Acids Res; 1998 Oct; 26(20):4771-7. PubMed ID: 9753748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation.
    Han J; Jiang Y; Li Z; Kravchenko VV; Ulevitch RJ
    Nature; 1997 Mar; 386(6622):296-9. PubMed ID: 9069290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases.
    Zhao M; Liu Y; Bao M; Kato Y; Han J; Eaton JW
    Arch Biochem Biophys; 2002 Apr; 400(2):199-207. PubMed ID: 12054430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-apoptotic wild-type Alzheimer amyloid precursor protein signaling involves the p38 mitogen-activated protein kinase/MEF2 pathway.
    Burton TR; Dibrov A; Kashour T; Amara FM
    Brain Res Mol Brain Res; 2002 Dec; 108(1-2):102-20. PubMed ID: 12480183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II induces myocyte enhancer factor 2- and calcineurin/nuclear factor of activated T cell-dependent transcriptional activation in vascular myocytes.
    Suzuki E; Nishimatsu H; Satonaka H; Walsh K; Goto A; Omata M; Fujita T; Nagai R; Hirata Y
    Circ Res; 2002 May; 90(9):1004-11. PubMed ID: 12016267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity.
    Zhu B; Gulick T
    Mol Cell Biol; 2004 Sep; 24(18):8264-75. PubMed ID: 15340086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway.
    Marinissen MJ; Chiariello M; Gutkind JS
    Genes Dev; 2001 Mar; 15(5):535-53. PubMed ID: 11238375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade.
    Enslen H; Tokumitsu H; Stork PJ; Davis RJ; Soderling TR
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10803-8. PubMed ID: 8855261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Big mitogen-activated kinase regulates multiple members of the MEF2 protein family.
    Kato Y; Zhao M; Morikawa A; Sugiyama T; Chakravortty D; Koide N; Yoshida T; Tapping RI; Yang Y; Yokochi T; Lee JD
    J Biol Chem; 2000 Jun; 275(24):18534-40. PubMed ID: 10849446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress: activating transcription factor 6 as a target for stress-induced phosphorylation.
    Luo S; Lee AS
    Biochem J; 2002 Sep; 366(Pt 3):787-95. PubMed ID: 12076252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static stretch promotes MEF2A nuclear translocation and expression of neonatal myosin heavy chain in C2C12 myocytes in a calcineurin- and p38-dependent manner.
    Rauch C; Loughna PT
    Am J Physiol Cell Physiol; 2005 Mar; 288(3):C593-605. PubMed ID: 15483225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of p38 MAP kinase increases okadaic acid mediated AP-1 expression and DNA binding but has no effect on TRE dependent transcription.
    Rosenberger SF; Gupta A; Bowden GT
    Oncogene; 1999 Jun; 18(24):3626-32. PubMed ID: 10380884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways.
    Al-Khalili L; Chibalin AV; Yu M; Sjödin B; Nylén C; Zierath JR; Krook A
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1410-6. PubMed ID: 14960415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.