These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 103737)
1. The role of fluorescein angiography in the detection of laser-induced damage to the retina: a threshold study for Q-switched, neodymium and ruby lasers. Borland RG; Brennan DH; Marshall J; Viveash JP Exp Eye Res; 1978 Oct; 27(4):471-93. PubMed ID: 103737 [No Abstract] [Full Text] [Related]
2. Ocular damage thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the rhesus monkey. Goldman AI; Ham WT; Mueller AH Exp Eye Res; 1977 Jan; 24(1):45-56. PubMed ID: 402283 [No Abstract] [Full Text] [Related]
3. Retinal laser damage thresholds as a function of image diameter. Beatrice ES; Frisch GD Arch Environ Health; 1973 Nov; 27(5):322-6. PubMed ID: 4200572 [No Abstract] [Full Text] [Related]
4. Mechanisms of retinal damage resulting from the exposure of rhesus monkeys to ultrashort laser pulses. Goldman AI; Ham WT; Mueller HA Exp Eye Res; 1975 Nov; 21(5):457-69. PubMed ID: 812713 [No Abstract] [Full Text] [Related]
5. Histopathology of ruby and argon laser lesions in monkey and human retina. A comparative study. Marshall J; Hamilton AM; Bird AC Br J Ophthalmol; 1975 Nov; 59(11):610-30. PubMed ID: 812546 [TBL] [Abstract][Full Text] [Related]
6. Retinal damage from long-term exposure to laser radiation. Gibbons WD; Allen RG Invest Ophthalmol Vis Sci; 1977 Jun; 16(6):521-9. PubMed ID: 405344 [TBL] [Abstract][Full Text] [Related]
7. Suprathreshold retinal damage due to single 6 picosecond 1060 nm laser light pulses. Schmidt RE; Taboada J; Butcher WI Aviat Space Environ Med; 1979 Aug; 50(8):788-91. PubMed ID: 115454 [TBL] [Abstract][Full Text] [Related]
8. The retinal pigment epithelium. Radiation thresholds associated with the Q-switched ruby laser. Leibowitz HM; Peacock GR; Friedman E Arch Ophthalmol; 1969 Sep; 82(3):332-8. PubMed ID: 4979836 [No Abstract] [Full Text] [Related]
10. Transpupillary thermotherapy: effect of wavelength on normal primate retina. Ito Y; Mori K; Takita H; Sodeyama T; Anzai K; Imai D; Shibuya M; Moshfeghi DM; Yoneya S; Peyman GA Retina; 2005 Dec; 25(8):1046-53. PubMed ID: 16340536 [TBL] [Abstract][Full Text] [Related]
11. Laser pointers and the human eye: a clinicopathologic study. Robertson DM; Lim TH; Salomao DR; Link TP; Rowe RL; McLaren JW Arch Ophthalmol; 2000 Dec; 118(12):1686-91. PubMed ID: 11115266 [TBL] [Abstract][Full Text] [Related]
12. Near infrared laser ocular bioeffects. Lund DJ; Beatrice ES Health Phys; 1989 May; 56(5):631-6. PubMed ID: 2708051 [TBL] [Abstract][Full Text] [Related]
13. Repair after xenon arc photocoagulation. 2. A clinical and light microscopic study of the evolution of retinal lesions in the rhesus monkey. Wallow IH; Tso MO Am J Ophthalmol; 1973 Apr; 75(4):610-26. PubMed ID: 4633188 [No Abstract] [Full Text] [Related]
14. Retinal damage threshold of ophthalmic Q-switched Nd-YAG laser in monkey eyes. Yumita A; Shirato S; Kitazawa Y Jpn J Ophthalmol; 1986; 30(1):100-15. PubMed ID: 3755188 [TBL] [Abstract][Full Text] [Related]
15. Class 3A laser pointer-induced retinal damage captured on optical coherence tomography. Wong R; Sim D; Rajendram R; Menon G Acta Ophthalmol Scand; 2007 Mar; 85(2):227-8. PubMed ID: 17305745 [No Abstract] [Full Text] [Related]
16. Retinal damage from a Q-switched YAG laser. Jampol LM; Goldberg MF; Jednock N Am J Ophthalmol; 1983 Sep; 96(3):326-9. PubMed ID: 6688504 [TBL] [Abstract][Full Text] [Related]
17. Femtosecond laser-induced premacular hemorrhage. Cooper BA; Blinder KJ; Shah GK; Foster W; Leibole M Retina; 2004 Oct; 24(5):812-4. PubMed ID: 15492645 [No Abstract] [Full Text] [Related]
18. Retinal damage secondary to chronic light exposure, thresholds and mechanisms. Lawwill T; Crockett S; Currier G Doc Ophthalmol; 1977 Dec; 44(2):379-402. PubMed ID: 413705 [TBL] [Abstract][Full Text] [Related]