These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 10375205)

  • 1. Primary difficulties in quantitative backscattered electron (BSE) imaging.
    Vajda EG; Skedros JG
    Bone; 1999 Jun; 24(6):619-21. PubMed ID: 10375205
    [No Abstract]   [Full Text] [Related]  

  • 2. Determining mineral content variations in bone using backscattered electron imaging.
    Bloebaum RD; Skedros JG; Vajda EG; Bachus KN; Constantz BR
    Bone; 1997 May; 20(5):485-90. PubMed ID: 9145247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of electron scattering in bone.
    Howell PG; Boyde A
    Bone; 1994; 15(3):285-91. PubMed ID: 8068449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities.
    Roschger P; Plenk H; Klaushofer K; Eschberger J
    Scanning Microsc; 1995 Mar; 9(1):75-86; discussion 86-8. PubMed ID: 8553027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backscattered electron imaging: the role in calcified tissue and implant analysis.
    Bloebaum RD; Bachus KN; Boyce TM
    J Biomater Appl; 1990 Jul; 5(1):56-85. PubMed ID: 2200867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.
    Howell PG; Boyde A
    Calcif Tissue Int; 2003 Jun; 72(6):745-9. PubMed ID: 14563004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues.
    Wong FS; Elliott JC
    Scanning; 1997 Nov; 19(8):541-6. PubMed ID: 9418207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone.
    Boyce TM; Bloebaum RD; Bachus KN; Skedros JG
    Scanning Microsc; 1990 Sep; 4(3):591-600; discussion 600-3. PubMed ID: 2080424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of protein A gold 15 nm marked surface antigens by backscattered electrons.
    Walther P; Kríz S; Müller M; Ariano BH; Brodbeck U; Ott P; Schweingruber ME
    Scan Electron Microsc; 1984; (Pt 3):1257-66. PubMed ID: 6095434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of mineral content and composition on graylevels in backscattered electron images of bone.
    Skedros JG; Bloebaum RD; Bachus KN; Boyce TM; Constantz B
    J Biomed Mater Res; 1993 Jan; 27(1):57-64. PubMed ID: 8420999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study.
    Kierdorf U; Kierdorf H; Boyde A
    J Anat; 2000 Jan; 196 ( Pt 1)(Pt 1):71-83. PubMed ID: 10697290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of topography and specimen preparation on backscattered electron images of bone.
    Vajda EG; Humphrey S; Skedros JG; Bloebaum RD
    Scanning; 1999; 21(6):379-87. PubMed ID: 10654424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineral content changes in bone associated with damage induced by the electron beam.
    Bloebaum RD; Holmes JL; Skedros JG
    Scanning; 2005; 27(5):240-8. PubMed ID: 16268176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backscattered electron imaging for high resolution surface scanning electron microscopy with a new type YAG-detector.
    Walther P; Autrata R; Chen Y; Pawley JB
    Scanning Microsc; 1991 Jun; 5(2):301-9; discussion 310. PubMed ID: 1947922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A restricted angular scattering model for electron penetration in dense media.
    McLellan J; Sandison GA; Papiez L; Huda W
    Med Phys; 1991; 18(1):1-6. PubMed ID: 2008170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc.
    Chow JC; Grigorov GN
    Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement accuracy of aluminium content in bone.
    Hellström HO; Lindh U; Mjöberg B
    Ups J Med Sci; 2000; 105(1):67-71. PubMed ID: 10893054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective.
    Skedros JG; Holmes JL; Vajda EG; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):781-803. PubMed ID: 16037990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone composition measured by x-ray scattering.
    Newton M; Hukins DW; Harding G
    Phys Med Biol; 1992 Jun; 37(6):1339-47. PubMed ID: 1626026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging.
    Angker L; Nockolds C; Swain MV; Kilpatrick N
    Arch Oral Biol; 2004 Feb; 49(2):99-107. PubMed ID: 14693203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.