These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 10375393)
1. S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Ross JR; Nam KH; D'Auria JC; Pichersky E Arch Biochem Biophys; 1999 Jul; 367(1):9-16. PubMed ID: 10375393 [TBL] [Abstract][Full Text] [Related]
2. Novel S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Negre F; Kolosova N; Knoll J; Kish CM; Dudareva N Arch Biochem Biophys; 2002 Oct; 406(2):261-70. PubMed ID: 12361714 [TBL] [Abstract][Full Text] [Related]
3. Characterization of S-adenosyl-L-methionine:(iso)eugenol O-methyltransferase involved in floral scent production in Clarkia breweri. Wang J; Pichersky E Arch Biochem Biophys; 1998 Jan; 349(1):153-60. PubMed ID: 9439593 [TBL] [Abstract][Full Text] [Related]
4. Purification and characterization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Murfitt LM; Kolosova N; Mann CJ; Dudareva N Arch Biochem Biophys; 2000 Oct; 382(1):145-51. PubMed ID: 11051108 [TBL] [Abstract][Full Text] [Related]
6. Positive selection for single amino acid change promotes substrate discrimination of a plant volatile-producing enzyme. Barkman TJ; Martins TR; Sutton E; Stout JT Mol Biol Evol; 2007 Jun; 24(6):1320-9. PubMed ID: 17374877 [TBL] [Abstract][Full Text] [Related]
7. Floral scent production in Clarkia breweri (Onagraceae). II. Localization and developmental modulation of the enzyme S-adenosyl-L-methionine:(iso)eugenol O-methyltransferase and phenylpropanoid emission. Wang J; Dudareva N; Bhakta S; Raguso RA; Pichersky E Plant Physiol; 1997 May; 114(1):213-21. PubMed ID: 9159948 [TBL] [Abstract][Full Text] [Related]
8. Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Wang J; Pichersky E Arch Biochem Biophys; 1999 Aug; 368(1):172-80. PubMed ID: 10415125 [TBL] [Abstract][Full Text] [Related]
9. Characterization and site-directed mutagenesis of aspen lignin-specific O-methyltransferase expressed in Escherichia coli. Meng H; Campbell WH Arch Biochem Biophys; 1996 Jun; 330(2):329-41. PubMed ID: 8660663 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Zubieta C; Ross JR; Koscheski P; Yang Y; Pichersky E; Noel JP Plant Cell; 2003 Aug; 15(8):1704-16. PubMed ID: 12897246 [TBL] [Abstract][Full Text] [Related]
11. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d(1) biosynthesis. Storbeck S; Walther J; Müller J; Parmar V; Schiebel HM; Kemken D; Dülcks T; Warren MJ; Layer G FEBS J; 2009 Oct; 276(20):5973-82. PubMed ID: 19754882 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning and characterization of S-adenosyl-L-methionine:scoulerine-9-O-methyltransferase from cultured cells of Coptis japonica. Takeshita N; Fujiwara H; Mimura H; Fitchen JH; Yamada Y; Sato F Plant Cell Physiol; 1995 Jan; 36(1):29-36. PubMed ID: 7719631 [TBL] [Abstract][Full Text] [Related]
13. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Effmert U; Saschenbrecker S; Ross J; Negre F; Fraser CM; Noel JP; Dudareva N; Piechulla B Phytochemistry; 2005 Jun; 66(11):1211-30. PubMed ID: 15946712 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and biochemical characterization of indole-3-acetic acid methyltransferase from poplar. Zhao N; Guan J; Lin H; Chen F Phytochemistry; 2007 Jun; 68(11):1537-44. PubMed ID: 17499822 [TBL] [Abstract][Full Text] [Related]
15. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. Vévodová J; Graham RM; Raux E; Schubert HL; Roper DI; Brindley AA; Ian Scott A; Roessner CA; Stamford NP; Elizabeth Stroupe M; Getzoff ED; Warren MJ; Wilson KS J Mol Biol; 2004 Nov; 344(2):419-33. PubMed ID: 15522295 [TBL] [Abstract][Full Text] [Related]
16. Unusual pseudosubstrate specificity of a novel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L. Burga L; Wellmann F; Lukacin R; Witte S; Schwab W; Schröder J; Matern U Arch Biochem Biophys; 2005 Aug; 440(1):54-64. PubMed ID: 16023070 [TBL] [Abstract][Full Text] [Related]
17. Maize uroporphyrinogen III methyltransferase: overexpression of the functional gene fragments in Escherichia coli and one-step purification. Fan J; Wang D; Liang Z; Guo M; Teng M; Niu L Protein Expr Purif; 2006 Mar; 46(1):40-6. PubMed ID: 16289918 [TBL] [Abstract][Full Text] [Related]
18. Expression, purification, and characterization of the protein repair l-isoaspartyl methyltransferase from Arabidopsis thaliana. Thapar N; Clarke S Protein Expr Purif; 2000 Nov; 20(2):237-51. PubMed ID: 11049748 [TBL] [Abstract][Full Text] [Related]