BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10375565)

  • 1. Iron acquisition by plants.
    Mori S
    Curr Opin Plant Biol; 1999 Jun; 2(3):250-3. PubMed ID: 10375565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants.
    Takahashi M; Yamaguchi H; Nakanishi H; Shioiri T; Nishizawa NK; Mori S
    Plant Physiol; 1999 Nov; 121(3):947-56. PubMed ID: 10557244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions.
    Ogo Y; Itai RN; Nakanishi H; Kobayashi T; Takahashi M; Mori S; Nishizawa NK
    Plant J; 2007 Aug; 51(3):366-77. PubMed ID: 17559517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.
    Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N
    Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes.
    Takahashi M; Nakanishi H; Kawasaki S; Nishizawa NK; Mori S
    Nat Biotechnol; 2001 May; 19(5):466-9. PubMed ID: 11329018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions.
    Higuchi K; Watanabe S; Takahashi M; Kawasaki S; Nakanishi H; Nishizawa NK; Mori S
    Plant J; 2001 Jan; 25(2):159-67. PubMed ID: 11169192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.
    Vansuyt G; Robin A; Briat JF; Curie C; Lemanceau P
    Mol Plant Microbe Interact; 2007 Apr; 20(4):441-7. PubMed ID: 17427814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley.
    Suzuki M; Takahashi M; Tsukamoto T; Watanabe S; Matsuhashi S; Yazaki J; Kishimoto N; Kikuchi S; Nakanishi H; Mori S; Nishizawa NK
    Plant J; 2006 Oct; 48(1):85-97. PubMed ID: 16972867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.
    Wu H; Li L; Du J; Yuan Y; Cheng X; Ling HQ
    Plant Cell Physiol; 2005 Sep; 46(9):1505-14. PubMed ID: 16006655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.
    Durrett TP; Connolly EL; Rogers EE
    Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production.
    Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S
    J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward mechanistic elucidation of iron acquisition in barley: efficient synthesis of mugineic acids and their transport activities.
    Namba K; Murata Y
    Chem Rec; 2010 Apr; 10(2):140-50. PubMed ID: 20354995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana.
    Jakoby M; Wang HY; Reidt W; Weisshaar B; Bauer P
    FEBS Lett; 2004 Nov; 577(3):528-34. PubMed ID: 15556641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants.
    Ogo Y; Itai RN; Nakanishi H; Inoue H; Kobayashi T; Suzuki M; Takahashi M; Mori S; Nishizawa NK
    J Exp Bot; 2006; 57(11):2867-78. PubMed ID: 16887895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An MYB transcription factor from Malus xiaojinensis has a potential role in iron nutrition.
    Shen J; Xu X; Li T; Cao D; Han Z
    J Integr Plant Biol; 2008 Oct; 50(10):1300-6. PubMed ID: 19017117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.
    Murata Y; Itoh Y; Iwashita T; Namba K
    PLoS One; 2015; 10(3):e0120227. PubMed ID: 25781941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine.
    Weber G; von Wirén N; Hayen H
    Biometals; 2008 Oct; 21(5):503-13. PubMed ID: 18322653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.