These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 10375675)
1. Analyses of signal transduction cascades in rat pinealocytes reveal a switch in cholinergic signaling during postnatal development. Schomerus C; Laedtke E; Korf HW Brain Res; 1999 Jun; 833(1):39-50. PubMed ID: 10375675 [TBL] [Abstract][Full Text] [Related]
2. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) induce phosphorylation of the transcription factor CREB in subpopulations of rat pinealocytes: immunocytochemical and immunochemical evidence. Schomerus C; Maronde E; Laedtke E; Korf HW Cell Tissue Res; 1996 Dec; 286(3):305-13. PubMed ID: 8929333 [TBL] [Abstract][Full Text] [Related]
3. Control of CREB phosphorylation and its role for induction of melatonin synthesis in rat pinealocytes. Maronde E; Schomerus C; Stehle JH; Korf HW Biol Cell; 1997 Nov; 89(8):505-11. PubMed ID: 9618900 [TBL] [Abstract][Full Text] [Related]
4. Signal transduction and regulation of melatonin synthesis in bovine pinealocytes: impact of adrenergic, peptidergic and cholinergic stimuli. Schomerus C; Laedtke E; Olcese J; Weller JL; Klein DC; Korf HW Cell Tissue Res; 2002 Sep; 309(3):417-28. PubMed ID: 12195298 [TBL] [Abstract][Full Text] [Related]
5. Cholinergic signal transduction cascades in rat pinealocytes: functional and ontogenetic aspects. Schomerus C; Korf HW Reprod Nutr Dev; 1999; 39(3):305-14. PubMed ID: 10420433 [TBL] [Abstract][Full Text] [Related]
6. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism. Roseboom PH; Klein DC Mol Pharmacol; 1995 Mar; 47(3):439-49. PubMed ID: 7700241 [TBL] [Abstract][Full Text] [Related]
7. Norepinephrine-dependent phosphorylation of the transcription factor cyclic adenosine monophosphate responsive element-binding protein in bovine pinealocytes. Schomerus C; Laedtke E; Korf HW J Pineal Res; 2003 Mar; 34(2):103-9. PubMed ID: 12562501 [TBL] [Abstract][Full Text] [Related]
8. Inducible cyclic AMP early repressor protein in rat pinealocytes: a highly sensitive natural reporter for regulated gene transcription. Pfeffer M; Maronde E; Molina CA; Korf HW; Stehle JH Mol Pharmacol; 1999 Aug; 56(2):279-89. PubMed ID: 10419546 [TBL] [Abstract][Full Text] [Related]
9. Adrenergic and cholinergic regulation of in vitro melatonin release during ontogeny in the pineal gland of Long Evans rats. Wagner G; Brandstätter R; Hermann A Neuroendocrinology; 2000 Sep; 72(3):154-61. PubMed ID: 11025409 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the intracellular concentration of free calcium ions in pinealocytes of the rainbow trout and the rat. Korf HW; Kroeber S; Schomerus C Biol Signals; 1997; 6(4-6):201-11. PubMed ID: 9500657 [TBL] [Abstract][Full Text] [Related]
11. Alpha 1D L-type Ca(2+)-channel currents: inhibition by a beta-adrenergic agonist and pituitary adenylate cyclase-activating polypeptide (PACAP) in rat pinealocytes. Chik CL; Liu QY; Li B; Klein DC; Zylka M; Kim DS; Chin H; Karpinski E; Ho AK J Neurochem; 1997 Mar; 68(3):1078-87. PubMed ID: 9048753 [TBL] [Abstract][Full Text] [Related]
12. Spontaneous and nicotine-induced Ca2+ oscillations mediated by Ca2+ influx in rat pinealocytes. Mizutani H; Yamamura H; Muramatsu M; Kiyota K; Nishimura K; Suzuki Y; Ohya S; Imaizumi Y Am J Physiol Cell Physiol; 2014 Jun; 306(11):C1008-16. PubMed ID: 24696145 [TBL] [Abstract][Full Text] [Related]
14. Analyses of signal transduction cascades reveal an essential role of calcium ions for regulation of melatonin biosynthesis in the light-sensitive pineal organ of the rainbow trout (Oncorhynchus mykiss). Kroeber S; Meissl H; Maronde E; Korf HW J Neurochem; 2000 Jun; 74(6):2478-89. PubMed ID: 10820209 [TBL] [Abstract][Full Text] [Related]
15. Acetylcholine triggers L-glutamate exocytosis via nicotinic receptors and inhibits melatonin synthesis in rat pinealocytes. Yamada H; Ogura A; Koizumi S; Yamaguchi A; Moriyama Y J Neurosci; 1998 Jul; 18(13):4946-52. PubMed ID: 9634560 [TBL] [Abstract][Full Text] [Related]
16. Norepinephrine-induced phosphorylation of the transcription factor CREB in isolated rat pinealocytes: an immunocytochemical study. Tamotsu S; Schomerus C; Stehle JH; Roseboom PH; Korf HW Cell Tissue Res; 1995 Nov; 282(2):219-26. PubMed ID: 8565052 [TBL] [Abstract][Full Text] [Related]
17. Modulation of nicotinic receptor channels by adrenergic stimulation in rat pinealocytes. Yoon JY; Jung SR; Hille B; Koh DS Am J Physiol Cell Physiol; 2014 Apr; 306(8):C726-35. PubMed ID: 24553185 [TBL] [Abstract][Full Text] [Related]
18. Adrenergic regulation of the distribution of transducer of regulated cAMP-response element-binding protein (TORC2) in rat pinealocytes. Kanyo R; Amyotte N; McTague J; Chik CL; Ho AK Endocrinology; 2011 Sep; 152(9):3440-50. PubMed ID: 21771889 [TBL] [Abstract][Full Text] [Related]
19. Regulation of growth hormone release in common carp pituitary cells by pituitary adenylate cyclase-activating polypeptide: signal transduction involves cAMP- and calcium-dependent mechanisms. Xiao D; Chu MM; Lee EK; Lin HR; Wong AO Neuroendocrinology; 2002 Nov; 76(5):325-38. PubMed ID: 12457043 [TBL] [Abstract][Full Text] [Related]
20. Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. von Gall C; Lewy A; Schomerus C; Vivien-Roels B; Pevét P; Korf HW; Stehle JH Eur J Neurosci; 2000 Mar; 12(3):964-72. PubMed ID: 10762326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]