These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 103758)

  • 1. [Simple means of recording spike activity of cerebral neurons in unrestricted animals].
    Pirogov AA; Orlov AA
    Fiziol Zh SSSR Im I M Sechenova; 1978 Nov; 64(11):16669-72. PubMed ID: 103758
    [No Abstract]   [Full Text] [Related]  

  • 2. Microdialysis in freely moving animals with simultaneous recording of electrophysiological processes at the dialysate collection point.
    Korshunov VA
    Neurosci Behav Physiol; 2006 Jul; 36(6):583-7. PubMed ID: 16783510
    [No Abstract]   [Full Text] [Related]  

  • 3. Surgical implantation of electroencephalographic electrodes in the dog.
    Bartels KE
    Am J Vet Res; 1976 Jan; 37(1):83-5. PubMed ID: 1247203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method of extracellular recording of neuronal activity in swimming mice.
    Korshunov VA; Averkin RG
    J Neurosci Methods; 2007 Sep; 165(2):244-50. PubMed ID: 17669505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The potentials of spectral-correlative methods for analyzing total brain electrical activity exemplified by a study of the electrosubcorticograms of dogs].
    Feshchenko VA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(3):567-79. PubMed ID: 2800707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of a high-intensity radiation exposure on the brain function of monkeys. The postradiation changes in brain bioelectrical activity].
    Legeza VI; Turlakov IuS
    Radiobiologiia; 1991; 31(1):97-106. PubMed ID: 2008531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrode implantation for the recording of brain electrical activity causes long-term changes in rat behavior].
    Pankova NB; Krupina NA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(5):898-901. PubMed ID: 9949540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologic basis of emotional expression: evoked potential and mirror focus studies in rhesus monkeys.
    Heath RG
    Biol Psychiatry; 1972 Aug; 5(1):15-31. PubMed ID: 4625344
    [No Abstract]   [Full Text] [Related]  

  • 11. [Means of multiple recording of neuronal activity in awake simians].
    Pirogov AA; Orlov AA
    Fiziol Zh SSSR Im I M Sechenova; 1977 Apr; 63(4):600-2. PubMed ID: 407110
    [No Abstract]   [Full Text] [Related]  

  • 12. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.
    Sodagar AM; Wise KD; Najafi K
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1075-88. PubMed ID: 17554826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording.
    BeMent SL; Wise KD; Anderson DJ; Najafi K; Drake KL
    IEEE Trans Biomed Eng; 1986 Feb; 33(2):230-41. PubMed ID: 3957372
    [No Abstract]   [Full Text] [Related]  

  • 15. [Electrophysiologic and morphologic studies of neocortical and deep brain structures during exposure to transcranial micropolarization].
    Gal'dinov GV; Akimova IM; Shkliaruk SP; Novikova TA
    Fiziol Zh SSSR Im I M Sechenova; 1979 Oct; 65(10):1448-57. PubMed ID: 116873
    [No Abstract]   [Full Text] [Related]  

  • 16. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.
    Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The spectral characteristics of the electrical activity in the rabbit brain during the hunger dominant].
    Pavlygina RA; Liubimova IuV; Davydov VI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(1):122-30. PubMed ID: 1647579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [An evaluation of the high-frequency components of the brain's electrical activity by using inhomogeneity indices].
    Kozlov MK; Dumenko VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(1):58-69. PubMed ID: 9182426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.