These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 10377174)
61. CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol. Yang S; Yu BO; Sui Y; Zhang Y; Wang X; Hou S; Ma T; Yang H Pharmazie; 2013 Sep; 68(9):772-6. PubMed ID: 24147347 [TBL] [Abstract][Full Text] [Related]
62. CFTR drives Na+-nHCO-3 cotransport in pancreatic duct cells: a basis for defective HCO-3 secretion in CF. Shumaker H; Amlal H; Frizzell R; Ulrich CD; Soleimani M Am J Physiol; 1999 Jan; 276(1):C16-25. PubMed ID: 9886916 [TBL] [Abstract][Full Text] [Related]
63. The Mechanistic Links between Insulin and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl Marunaka Y Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28805732 [TBL] [Abstract][Full Text] [Related]
64. Role of CFTR in the colon. Greger R Annu Rev Physiol; 2000; 62():467-91. PubMed ID: 10845099 [TBL] [Abstract][Full Text] [Related]
65. Discrimination between cystic fibrosis and CFTR-corrected epithelial cells by a membrane potential-sensitive probe. Coclet-Ninin J; Rochat T; Poitry S; Chanson M Exp Lung Res; 2002; 28(3):181-99. PubMed ID: 11936773 [TBL] [Abstract][Full Text] [Related]
66. Heterotrimeric G proteins, vesicle trafficking, and CFTR Cl- channels. Schwiebert EM; Gesek F; Ercolani L; Wjasow C; Gruenert DC; Karlson K; Stanton BA Am J Physiol; 1994 Jul; 267(1 Pt 1):C272-81. PubMed ID: 7519398 [TBL] [Abstract][Full Text] [Related]
67. Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator. Greger R; Mall M; Bleich M; Ecke D; Warth R; Riedemann N; Kunzelmann K J Mol Med (Berl); 1996 Sep; 74(9):527-34. PubMed ID: 8892058 [TBL] [Abstract][Full Text] [Related]
68. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR. Huguet F; Calvez ML; Benz N; Le Hir S; Mignen O; Buscaglia P; Horgen FD; Férec C; Kerbiriou M; Trouvé P Cell Mol Life Sci; 2016 Sep; 73(17):3351-73. PubMed ID: 26874684 [TBL] [Abstract][Full Text] [Related]
69. Targeting of carbonic anhydrase IV to plasma membranes is altered in cultured human pancreatic duct cells expressing a mutated (deltaF508) CFTR. Fanjul M; Salvador C; Alvarez L; Cantet S; Hollande E Eur J Cell Biol; 2002 Aug; 81(8):437-47. PubMed ID: 12234015 [TBL] [Abstract][Full Text] [Related]
70. Potentiation of mutant CFTR Cl- channel currents by the naturally occurring stilbene compound resveratrol. Yu B; Zhang Y; Sui Y; Yang S; Luan J; Wang X; Ma T; Yang H Pharmazie; 2013 Nov; 68(11):877-81. PubMed ID: 24380236 [TBL] [Abstract][Full Text] [Related]
71. Prostaglandin E₂regulation of cystic fibrosis transmembrane conductance regulator activity and airway surface liquid volume requires gap junctional communication. Scheckenbach KE; Losa D; Dudez T; Bacchetta M; O'Grady S; Crespin S; Chanson M Am J Respir Cell Mol Biol; 2011 Jan; 44(1):74-82. PubMed ID: 20167933 [TBL] [Abstract][Full Text] [Related]
72. Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts. Reddy MM; Wang XF; Quinton PM J Membr Biol; 2008; 225(1-3):1-11. PubMed ID: 18937003 [TBL] [Abstract][Full Text] [Related]
73. Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis transmembrane conductance regulator. Su X; Li Q; Shrestha K; Cormet-Boyaka E; Chen L; Smith PR; Sorscher EJ; Benos DJ; Matalon S; Ji HL J Biol Chem; 2006 Dec; 281(48):36960-8. PubMed ID: 17012229 [TBL] [Abstract][Full Text] [Related]
74. Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR. Treharne KJ; Xu Z; Chen JH; Best OG; Cassidy DM; Gruenert DC; Hegyi P; Gray MA; Sheppard DN; Kunzelmann K; Mehta A Cell Physiol Biochem; 2009; 24(5-6):347-60. PubMed ID: 19910675 [TBL] [Abstract][Full Text] [Related]
75. Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. Zeng W; Lee MG; Yan M; Diaz J; Benjamin I; Marino CR; Kopito R; Freedman S; Cotton C; Muallem S; Thomas P Am J Physiol; 1997 Aug; 273(2 Pt 1):C442-55. PubMed ID: 9277342 [TBL] [Abstract][Full Text] [Related]
76. The biogenesis, traffic, and function of the cystic fibrosis transmembrane conductance regulator. Jilling T; Kirk KL Int Rev Cytol; 1997; 172():193-241. PubMed ID: 9102394 [TBL] [Abstract][Full Text] [Related]
77. Characterization of two distinct chloride channels in cultured dog pancreatic duct epithelial cells. Nguyen TD; Koh DS; Moody MW; Fox NR; Savard CE; Kuver R; Hille B; Lee SP Am J Physiol; 1997 Jan; 272(1 Pt 1):G172-80. PubMed ID: 9038891 [TBL] [Abstract][Full Text] [Related]
78. Coupling cystic fibrosis to endoplasmic reticulum stress: Differential role of Grp78 and ATF6. Kerbiriou M; Le Drévo MA; Férec C; Trouvé P Biochim Biophys Acta; 2007 Dec; 1772(11-12):1236-49. PubMed ID: 18022401 [TBL] [Abstract][Full Text] [Related]
79. Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle. Krauss RD; Bubien JK; Drumm ML; Zheng T; Peiper SC; Collins FS; Kirk KL; Frizzell RA; Rado TA EMBO J; 1992 Mar; 11(3):875-83. PubMed ID: 1372253 [TBL] [Abstract][Full Text] [Related]
80. The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl- channel in mouse 3T3 fibroblasts. Fischer H; Illek B; Machen TE J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):745-54. PubMed ID: 8788939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]