BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 10377428)

  • 21. The paleontology of intergene retrotransposons of maize.
    SanMiguel P; Gaut BS; Tikhonov A; Nakajima Y; Bennetzen JL
    Nat Genet; 1998 Sep; 20(1):43-5. PubMed ID: 9731528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orthologous comparisons of the Hd1 region across genera reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in Sorghum.
    Sanyal A; Ammiraju JS; Lu F; Yu Y; Rambo T; Currie J; Kollura K; Kim HR; Chen J; Ma J; San Miguel P; Mingsheng C; Wing RA; Jackson SA
    Mol Biol Evol; 2010 Nov; 27(11):2487-506. PubMed ID: 20522726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of orthologous and paralogous DNA flanking the wheat high molecular weight glutenin genes: sequence conservation and divergence, transposon distribution, and matrix-attachment regions.
    Anderson OD; Larka L; Christoffers MJ; McCue KF; Gustafson JP
    Genome; 2002 Apr; 45(2):367-80. PubMed ID: 11962634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and evolution of the Cinful retrotransposon family of maize.
    Sanz-Alferez S; SanMiguel P; Jin YK; Springer PS; Bennetzen JL
    Genome; 2003 Oct; 46(5):745-52. PubMed ID: 14608391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DIRS-1 and the other tyrosine recombinase retrotransposons.
    Poulter RT; Goodwin TJ
    Cytogenet Genome Res; 2005; 110(1-4):575-88. PubMed ID: 16093711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.
    Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL
    PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae.
    Li W; Gill BS
    Genetics; 2002 Mar; 160(3):1153-62. PubMed ID: 11901130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome.
    Meyers BC; Tingey SV; Morgante M
    Genome Res; 2001 Oct; 11(10):1660-76. PubMed ID: 11591643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The evolution of grass genome organisation and function.
    Bennetzen JL
    Symp Soc Exp Biol; 1998; 51():123-6. PubMed ID: 10645434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A physical map of the sorghum chloroplast genome.
    Dang LH; Pring DR
    Plant Mol Biol; 1986 Mar; 6(2):119-23. PubMed ID: 24307228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons.
    Yang TJ; Lee S; Chang SB; Yu Y; de Jong H; Wing RA
    Chromosoma; 2005 Jul; 114(2):103-17. PubMed ID: 15965704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize.
    van Buuren ML; Salvi S; Morgante M; Serhani B; Tuberosa R
    Plant Mol Biol; 2002; 48(5-6):741-50. PubMed ID: 11999847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insular organization of gene space in grass genomes.
    Gottlieb A; Müller HG; Massa AN; Wanjugi H; Deal KR; You FM; Xu X; Gu YQ; Luo MC; Anderson OD; Chan AP; Rabinowicz P; Devos KM; Dvorak J
    PLoS One; 2013; 8(1):e54101. PubMed ID: 23326580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m).
    SanMiguel PJ; Ramakrishna W; Bennetzen JL; Busso CS; Dubcovsky J
    Funct Integr Genomics; 2002 May; 2(1-2):70-80. PubMed ID: 12021852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene identification in a complex chromosomal continuum by local genomic cross-referencing.
    Avramova Z; Tikhonov A; SanMiguel P; Jin YK; Liu C; Woo SS; Wing RA; Bennetzen JL
    Plant J; 1996 Dec; 10(6):1163-8. PubMed ID: 9011097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in coix, sorghum and maize genomes.
    Zhou L; Huang B; Meng X; Wang G; Wang F; Xu Z; Song R
    Plant Mol Biol; 2010 Dec; 74(6):631-43. PubMed ID: 20938800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Further evidence of microcolinearity between barley and rice genomes at two orthologous regions.
    Park YJ; Dixit A; Yoo JW; Bennetzen J
    Mol Cells; 2004 Jun; 17(3):492-502. PubMed ID: 15232225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases.
    Zhang X; Feschotte C; Zhang Q; Jiang N; Eggleston WB; Wessler SR
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12572-7. PubMed ID: 11675493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max.
    Zabala G; Vodkin L
    BMC Plant Biol; 2008 Dec; 8():124. PubMed ID: 19055742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.