BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 10377428)

  • 41. Centromere retention and loss during the descent of maize from a tetraploid ancestor.
    Wang H; Bennetzen JL
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):21004-9. PubMed ID: 23197827
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerous small rearrangements of gene content, order and orientation differentiate grass genomes.
    Bennetzen JL; Ramakrishna W
    Plant Mol Biol; 2002; 48(5-6):821-7. PubMed ID: 11999852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes.
    Guermonprez H; Loot C; Casacuberta JM
    Genetics; 2008 Sep; 180(1):83-92. PubMed ID: 18757929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.
    El Baidouri M; Panaud O
    Genome Biol Evol; 2013; 5(5):954-65. PubMed ID: 23426643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Matrix attachment regions and structural colinearity in the genomes of two grass species.
    Avramova Z; Tikhonov A; Chen M; Bennetzen JL
    Nucleic Acids Res; 1998 Feb; 26(3):761-7. PubMed ID: 9443968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nested retrotransposons in the intergenic regions of the maize genome.
    SanMiguel P; Tikhonov A; Jin YK; Motchoulskaia N; Zakharov D; Melake-Berhan A; Springer PS; Edwards KJ; Lee M; Avramova Z; Bennetzen JL
    Science; 1996 Nov; 274(5288):765-8. PubMed ID: 8864112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative sequence analysis of the Ghd7 orthologous regions revealed movement of Ghd7 in the grass genomes.
    Yang L; Liu T; Li B; Sui Y; Chen J; Shi J; Wing RA; Chen M
    PLoS One; 2012; 7(11):e50236. PubMed ID: 23185584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scatter: a novel family of miniature inverted-repeat transposable elements in the fungus Botrytis cinerea.
    Deng H; Shu D; Luo D; Gong T; Sun F; Tan H
    J Basic Microbiol; 2013 Oct; 53(10):815-22. PubMed ID: 23775675
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes.
    Vitte C; Estep MC; Leebens-Mack J; Bennetzen JL
    Ann Bot; 2013 Sep; 112(5):881-9. PubMed ID: 23887091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the tetraploid origin of the maize genome.
    Swigonova Z; Lai J; Ma J; Ramakrishna W; Llaca V; Bennetzen JL; Messing J
    Comp Funct Genomics; 2004; 5(3):281-4. PubMed ID: 18629160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses.
    Bowers JE; Abbey C; Anderson S; Chang C; Draye X; Hoppe AH; Jessup R; Lemke C; Lennington J; Li Z; Lin YR; Liu SC; Luo L; Marler BS; Ming R; Mitchell SE; Qiang D; Reischmann K; Schulze SR; Skinner DN; Wang YW; Kresovich S; Schertz KF; Paterson AH
    Genetics; 2003 Sep; 165(1):367-86. PubMed ID: 14504243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex organization and evolution of the tomato pericentromeric region at the FER gene locus.
    Guyot R; Cheng X; Su Y; Cheng Z; Schlagenhauf E; Keller B; Ling HQ
    Plant Physiol; 2005 Jul; 138(3):1205-15. PubMed ID: 16009996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs.
    Woodhouse MR; Schnable JC; Pedersen BS; Lyons E; Lisch D; Subramaniam S; Freeling M
    PLoS Biol; 2010 Jun; 8(6):e1000409. PubMed ID: 20613864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae.
    Roulin A; Piegu B; Fortune PM; Sabot F; D'Hont A; Manicacci D; Panaud O
    BMC Evol Biol; 2009 Mar; 9():58. PubMed ID: 19291296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mosaic organization of orthologous sequences in grass genomes.
    Song R; Llaca V; Messing J
    Genome Res; 2002 Oct; 12(10):1549-55. PubMed ID: 12368247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative genome mapping of Sorghum and maize.
    Whitkus R; Doebley J; Lee M
    Genetics; 1992 Dec; 132(4):1119-30. PubMed ID: 1360933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes.
    Hulbert SH; Richter TE; Axtell JD; Bennetzen JL
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4251-5. PubMed ID: 1971947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The polychromatic Helitron landscape of the maize genome.
    Du C; Fefelova N; Caronna J; He L; Dooner HK
    Proc Natl Acad Sci U S A; 2009 Nov; 106(47):19916-21. PubMed ID: 19926866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum.
    McIntyre CL; Hermann SM; Casu RE; Knight D; Drenth J; Tao Y; Brumbley SM; Godwin ID; Williams S; Smith GR; Manners JM
    Theor Appl Genet; 2004 Aug; 109(4):875-83. PubMed ID: 15156283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana.
    Nah G; Pagliarulo CL; Mohr PG; Luo M; Sisneros N; Yu Y; Collura K; Currie J; Goicoechea JL; Wing RA; Schumaker KS
    Genomics; 2009 Sep; 94(3):196-203. PubMed ID: 19481598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.