These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10377569)

  • 21. Fluorescence resonance energy transfer (FRET) in analysis of transcription-complex structure and function.
    Mukhopadhyay J; Mekler V; Kortkhonjia E; Kapanidis AN; Ebright YW; Ebright RH
    Methods Enzymol; 2003; 371():144-59. PubMed ID: 14712697
    [No Abstract]   [Full Text] [Related]  

  • 22. Rapid quench mixing to quantify kinetics of steps in association of Escherichia coli RNA polymerase with promoter DNA.
    Saecker RM; Tsodikov OV; Capp MW; Record MT
    Methods Enzymol; 2003; 370():535-46. PubMed ID: 14712673
    [No Abstract]   [Full Text] [Related]  

  • 23. Location of the Escherichia coli RNA polymerase alpha subunit C-terminal domain at an FNR-dependent promoter: analysis using an artificial nuclease.
    Barnard AM; Lloyd GS; Green J; Busby SJ; Lee DJ
    FEBS Lett; 2004 Jan; 558(1-3):13-8. PubMed ID: 14759508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and function in promoter escape by T7 RNA polymerase.
    Martin CT; Esposito EA; Theis K; Gong P
    Prog Nucleic Acid Res Mol Biol; 2005; 80():323-47. PubMed ID: 16164978
    [No Abstract]   [Full Text] [Related]  

  • 25. Assay of intrinsic transcript termination by E. coli RNA polymerase on single-stranded and double-stranded DNA templates.
    Uptain SM
    Methods Enzymol; 2003; 371():339-51. PubMed ID: 14712712
    [No Abstract]   [Full Text] [Related]  

  • 26. Interaction of the C-terminal domain of the E. coli RNA polymerase alpha subunit with the UP element: recognizing the backbone structure in the minor groove surface.
    Yasuno K; Yamazaki T; Tanaka Y; Kodama TS; Matsugami A; Katahira M; Ishihama A; Kyogoku Y
    J Mol Biol; 2001 Feb; 306(2):213-25. PubMed ID: 11237595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular biology. When a part is as good as the whole.
    deHaseth PL; Nilsen TW
    Science; 2004 Feb; 303(5662):1307-8. PubMed ID: 14988541
    [No Abstract]   [Full Text] [Related]  

  • 28. Kinetics of multisubunit RNA polymerases: experimental methods and data analysis.
    Holmes SF; Foster JE; Erie DA
    Methods Enzymol; 2003; 371():71-81. PubMed ID: 14712692
    [No Abstract]   [Full Text] [Related]  

  • 29. Imaging transcription complexes with the Atomic Force Microscope.
    Rivetti C; Vannini N; Cellai S
    Ital J Biochem; 2003 Jun; 52(2):98-103. PubMed ID: 14677426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential melting of the transcription start site associated with changes in RNA polymerase-promoter contacts in initiating transcription complexes.
    Brodolin K; Buckle M
    J Mol Biol; 2001 Mar; 307(1):25-30. PubMed ID: 11243800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystallographic analysis of Thermus aquaticus RNA polymerase holoenzyme and a holoenzyme/promoter DNA complex.
    Murakami KS; Masuda S; Darst SA
    Methods Enzymol; 2003; 370():42-53. PubMed ID: 14712632
    [No Abstract]   [Full Text] [Related]  

  • 32. RNA polymerase structure and function at lac operon.
    Borukhov S; Lee J
    C R Biol; 2005 Jun; 328(6):576-87. PubMed ID: 15950164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular gymnastics: distortion of an RNA polymerase sigma factor.
    Hinton DM
    Trends Microbiol; 2005 Apr; 13(4):140-3. PubMed ID: 15817381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Minimal machinery of RNA polymerase holoenzyme sufficient for promoter melting.
    Young BA; Gruber TM; Gross CA
    Science; 2004 Feb; 303(5662):1382-4. PubMed ID: 14988563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase.
    Harada Y; Ohara O; Takatsuki A; Itoh H; Shimamoto N; Kinosita K
    Nature; 2001 Jan; 409(6816):113-5. PubMed ID: 11343125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs.
    Lee CH; Chandani S; Loechler EL
    J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex.
    Xu J; Koudelka GB
    J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins.
    Toulokhonov I; Artsimovitch I; Landick R
    Science; 2001 Apr; 292(5517):730-3. PubMed ID: 11326100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy.
    Datta K; Johnson NP; von Hippel PH
    J Mol Biol; 2006 Jul; 360(4):800-13. PubMed ID: 16784751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of A(n) tracts within the UP element proximal subsite of a model promoter on kinetics of open complex formation by Escherichia coli RNA polymerase.
    Kolasa IK; LoziƄski T; Wierzchowski KL
    Acta Biochim Pol; 2002; 49(3):659-69. PubMed ID: 12422236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.