These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10377978)

  • 1. Masking by light in hamsters with SCN lesions.
    Redlin U; Mrosovsky N
    J Comp Physiol A; 1999 Apr; 184(4):439-48. PubMed ID: 10377978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of masking by hypothalamic lesions in Syrian hamsters.
    Li X; Gilbert J; Davis FC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):23-30. PubMed ID: 15449094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced masking response to light in hamsters with IGL lesions.
    Redlin U; Vrang N; Mrosovsky N
    J Comp Physiol A; 1999 Apr; 184(4):449-56. PubMed ID: 10377979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Masking of locomotor activity in hamsters.
    Redlin U; Mrosovsky N
    J Comp Physiol A; 1999 Apr; 184(4):429-37. PubMed ID: 10377977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro.
    Watanabe A; Shibata S; Watanabe S
    Brain Res; 1995 Oct; 695(2):237-9. PubMed ID: 8556336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.
    Manoogian EN; Leise TL; Bittman EL
    J Biol Rhythms; 2015 Apr; 30(2):129-43. PubMed ID: 25633984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters.
    Scarbrough K; Turek FW
    Brain Res; 1996 Oct; 736(1-2):251-9. PubMed ID: 8930331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonphotic entrainment of circadian activity rhythms in suprachiasmatic nuclei-ablated hamsters.
    Mistlberger RE
    Behav Neurosci; 1992 Feb; 106(1):192-202. PubMed ID: 1554431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhythmic properties of the hamster suprachiasmatic nucleus in vivo.
    Yamazaki S; Kerbeshian MC; Hocker CG; Block GD; Menaker M
    J Neurosci; 1998 Dec; 18(24):10709-23. PubMed ID: 9852606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the phase and period of circadian rhythms restored by suprachiasmatic transplants.
    Matsumoto S; Basil J; Jetton AE; Lehman MN; Bittman EL
    J Biol Rhythms; 1996 Jun; 11(2):145-62. PubMed ID: 8744242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCN lesions abolish ultradian and circadian components of activity rhythms in LEW/Ztm rats.
    Wollnik F; Turek FW
    Am J Physiol; 1989 May; 256(5 Pt 2):R1027-39. PubMed ID: 2785771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro electrical activity in the suprachiasmatic nucleus following splitting and masking of wheel-running behavior.
    Zlomanczuk P; Margraf RR; Lynch GR
    Brain Res; 1991 Sep; 559(1):94-9. PubMed ID: 1782563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.
    Moriya T; Yoshinobu Y; Ikeda M; Yokota S; Akiyama M; Shibata S
    Br J Pharmacol; 1998 Nov; 125(6):1281-7. PubMed ID: 9863658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensive voluntary wheel running may restore circadian activity rhythms and improves the impaired cognitive performance of arrhythmic Djungarian hamsters.
    Weinert D; Schöttner K; Müller L; Wienke A
    Chronobiol Int; 2016; 33(9):1161-1170. PubMed ID: 27459238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal monosodium glutamate treatment counteracts circadian arrhythmicity induced by phase shifts of the light-dark cycle in female and male Siberian hamsters.
    Prendergast BJ; Onishi KG; Zucker I
    Brain Res; 2013 Jul; 1521():51-8. PubMed ID: 23701725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms.
    Gorman MR; Yellon SM; Lee TM
    J Biol Rhythms; 2001 Dec; 16(6):552-63. PubMed ID: 11760013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.