These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10378012)

  • 1. Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation.
    Marcu L; Grundfest WS; Maarek JM
    Photochem Photobiol; 1999 Jun; 69(6):713-21. PubMed ID: 10378012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique.
    Maarek JM; Marcu L; Snyder WJ; Grundfest WS
    Photochem Photobiol; 2000 Feb; 71(2):178-87. PubMed ID: 10687392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ultraviolet laser-induced autofluorescence of ceroid deposits and other structures in atherosclerotic plaques as a potential diagnostic for laser angiosurgery.
    Verbunt RJ; Fitzmaurice MA; Kramer JR; Ratliff NB; Kittrell C; Taroni P; Cothren RM; Baraga J; Feld M
    Am Heart J; 1992 Jan; 123(1):208-16. PubMed ID: 1729827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies into the influence of UV radiation on elastin in the presence of collagen.
    Sionkowska A; Skopinska J; Wisniewski M; Leznicki A
    J Photochem Photobiol B; 2007 Feb; 86(2):186-91. PubMed ID: 17055284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo optical analysis of quantitative changes in collagen and elastin during arterial remodeling.
    Christov A; Korol RM; Dai E; Liu L; Guan H; Bernards MA; Cavers PB; Susko D; Lucas A
    Photochem Photobiol; 2005; 81(2):457-66. PubMed ID: 15560737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the site dependency of normal canine arterial fluorescence.
    Garrand TJ; Stetz ML; O'Brien KM; Gindi GR; Laifer LI; Deckelbaum LI
    Lasers Surg Med; 1990; 10(4):375-83. PubMed ID: 2392018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopic imaging to detect changes in collagen and elastin following laser tissue welding.
    Tang J; Zeng F; Savage H; Ho PP; Alfano RR
    J Clin Laser Med Surg; 2000 Feb; 18(1):3-8. PubMed ID: 11189110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306-310 nm excitation.
    Baraga JJ; Rava RP; Taroni P; Kittrell C; Fitzmaurice M; Feld MS
    Lasers Surg Med; 1990; 10(3):245-61. PubMed ID: 2345474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical effects and hypericin photosensitized processes in collagen.
    Yova D; Hovhannisyan V; Theodossiou T
    J Biomed Opt; 2001 Jan; 6(1):52-7. PubMed ID: 11178580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemistry of type I acid-soluble calf skin collagen: dependence on excitation wavelength.
    Menter JM; Williamson GD; Carlyle K; Moore CL; Willis I
    Photochem Photobiol; 1995 Sep; 62(3):402-8. PubMed ID: 8570699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical basis for the difference between normal and atherosclerotic arterial fluorescence.
    Laifer LI; O'Brien KM; Stetz ML; Gindi GR; Garrand TJ; Deckelbaum LI
    Circulation; 1989 Dec; 80(6):1893-901. PubMed ID: 2532078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic studies into the influence of UV radiation on elastin hydrolysates in water solution.
    Sionkowska A; Skopinska J; Wisniewski M; Leznicki A; Fisz J
    J Photochem Photobiol B; 2006 Oct; 85(1):79-84. PubMed ID: 16829118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fluorescence spectroscopy study on photobleaching properties of photosensitizers in photodynamic therapy].
    Wang L; Gu Y; Li XS; Liu FG; Yu CQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2073-8. PubMed ID: 18306799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of basement membrane collagen and elastin in the autofluorescence spectra of the colon.
    Banerjee B; Miedema BE; Chandrasekhar HR
    J Investig Med; 1999 Jul; 47(6):326-32. PubMed ID: 10431488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of spectral characteristics of human artery wall caused by 476-nm laser irradiation.
    Chaudhry HW; Richards-Kortum R; Kolubayev T; Kittrell C; Partovi F; Kramer JR; Feld MS
    Lasers Surg Med; 1989; 9(6):572-80. PubMed ID: 2601550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of various bicolor fluorescent micropatterns on a single polymer film based on concurrent photobleaching and photobase generation.
    Chae KH; Kim HS
    Macromol Rapid Commun; 2015 Mar; 36(6):558-65. PubMed ID: 25676680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells.
    Benson DM; Bryan J; Plant AL; Gotto AM; Smith LC
    J Cell Biol; 1985 Apr; 100(4):1309-23. PubMed ID: 3920227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photobleaching of arterial autofluorescence for immunofluorescence applications.
    Kingsley K; Carroll K; Huff JL; Plopper GE
    Biotechniques; 2001 Apr; 30(4):794-7. PubMed ID: 11314262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband diffuse optical characterization of elastin for biomedical applications.
    Konugolu Venkata Sekar S; Beh JS; Farina A; Dalla Mora A; Pifferi A; Taroni P
    Biophys Chem; 2017 Oct; 229():130-134. PubMed ID: 28733103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points.
    Kwon GP; Schroeder JL; Amar MJ; Remaley AT; Balaban RS
    Circulation; 2008 Jun; 117(22):2919-27. PubMed ID: 18506002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.