BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10378271)

  • 1. The 2.7 A crystal structure of deoxygenated hemoglobin from the sea lamprey (Petromyzon marinus): structural basis for a lowered oxygen affinity and Bohr effect.
    Heaslet HA; Royer WE
    Structure; 1999 May; 7(5):517-26. PubMed ID: 10378271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystalline ligand transitions in lamprey hemoglobin. Structural evidence for the regulation of oxygen affinity.
    Heaslet HA; Royer WE
    J Biol Chem; 2001 Jul; 276(28):26230-6. PubMed ID: 11340069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamprey hemoglobin. Structural basis of the bohr effect.
    Qiu Y; Maillett DH; Knapp J; Olson JS; Riggs AF
    J Biol Chem; 2000 May; 275(18):13517-28. PubMed ID: 10788466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hagfish hemoglobins: structure, function, and oxygen-linked association.
    Fago A; Giangiacomo L; D'Avino R; Carratore V; Romano M; Boffi A; Chiancone E
    J Biol Chem; 2001 Jul; 276(29):27415-23. PubMed ID: 11294865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hemoglobin of the sea lamprey, Petromyzon marinus.
    WALD G; RIGGS A
    J Gen Physiol; 1951 Sep; 35(1):45-53. PubMed ID: 14873920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refinement of a molecular model for lamprey hemoglobin from Petromyzon marinus.
    Honzatko RB; Hendrickson WA; Love WE
    J Mol Biol; 1985 Jul; 184(1):147-64. PubMed ID: 4032476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin.
    Knapp JE; Bonham MA; Gibson QH; Nichols JC; Royer WE
    Biochemistry; 2005 Nov; 44(44):14419-30. PubMed ID: 16262242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular models for the putative dimer of sea lamprey hemoglobin.
    Honzatko RB; Hendrickson WA
    Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8487-91. PubMed ID: 3464965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity.
    Liang Y; Hua Z; Liang X; Xu Q; Lu G
    J Mol Biol; 2001 Oct; 313(1):123-37. PubMed ID: 11601851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution crystallographic analysis of a co-operative dimeric hemoglobin.
    Royer WE
    J Mol Biol; 1994 Jan; 235(2):657-81. PubMed ID: 8289287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the heterotropic and homotropic interactions of invertebrate giant hemoglobin.
    Numoto N; Nakagawa T; Kita A; Sasayama Y; Fukumori Y; Miki K
    Biochemistry; 2008 Oct; 47(43):11231-8. PubMed ID: 18834142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cathodic hemoglobin of Anguilla anguilla. Amino acid sequence and oxygen equilibria of a reverse Bohr effect hemoglobin with high oxygen affinity and high phosphate sensitivity.
    Fago A; Carratore V; di Prisco G; Feuerlein RJ; Sottrup-Jensen L; Weber RE
    J Biol Chem; 1995 Aug; 270(32):18897-902. PubMed ID: 7642546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 1.9 A structure of deoxy beta 4 hemoglobin. Analysis of the partitioning of quaternary-associated and ligand-induced changes in tertiary structure.
    Borgstahl GE; Rogers PH; Arnone A
    J Mol Biol; 1994 Feb; 236(3):831-43. PubMed ID: 8114097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin.
    Fang TY; Zou M; Simplaceanu V; Ho NT; Ho C
    Biochemistry; 1999 Oct; 38(40):13423-32. PubMed ID: 10529219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein dynamics explain the allosteric behaviors of hemoglobin.
    Yonetani T; Laberge M
    Biochim Biophys Acta; 2008 Sep; 1784(9):1146-58. PubMed ID: 18519045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal Structure Analysis of Great Cormorant (Phalacrocorax carbo) Hemoglobin to Understand its High Oxygen Affinity Characteristics by Special Structural Features.
    Ganapathy J; Palayam M; Pennathur G; Sanmargam A; Krishnasamy G
    Protein Pept Lett; 2018; 25(8):748-756. PubMed ID: 29929459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel low oxygen affinity recombinant hemoglobin (alpha96val--> Trp): switching quaternary structure without changing the ligation state.
    Kim HW; Shen TJ; Sun DP; Ho NT; Madrid M; Ho C
    J Mol Biol; 1995 May; 248(4):867-82. PubMed ID: 7752247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution NMR study of the structural basis of the Bohr effect in the monomeric hemoglobins from Chironomus thummi thummi.
    Zhang W; Gersonde K; La Mar GN
    Biochemistry; 1997 Feb; 36(7):1689-98. PubMed ID: 9048552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp.
    Tarricone C; Galizzi A; Coda A; Ascenzi P; Bolognesi M
    Structure; 1997 Apr; 5(4):497-507. PubMed ID: 9115439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.