BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 10378276)

  • 1. Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases.
    Kern AD; Oliveira MA; Coffino P; Hackert ML
    Structure; 1999 May; 7(5):567-81. PubMed ID: 10378276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structure of ornithine decarboxylase from Trypanosoma brucei: the native structure and the structure in complex with alpha-difluoromethylornithine.
    Grishin NV; Osterman AL; Brooks HB; Phillips MA; Goldsmith EJ
    Biochemistry; 1999 Nov; 38(46):15174-84. PubMed ID: 10563800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structure determination of Trypanosoma brucei ornithine decarboxylase bound to D-ornithine and to G418: insights into substrate binding and ODC conformational flexibility.
    Jackson LK; Goldsmith EJ; Phillips MA
    J Biol Chem; 2003 Jun; 278(24):22037-43. PubMed ID: 12672797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of the spatial structure of eukaryotic ornithine decarboxylases.
    Grishin NV; Phillips MA; Goldsmith EJ
    Protein Sci; 1995 Jul; 4(7):1291-304. PubMed ID: 7670372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Arg-277 in the binding of pyridoxal 5'-phosphate to Trypanosoma brucei ornithine decarboxylase.
    Osterman AL; Brooks HB; Rizo J; Phillips MA
    Biochemistry; 1997 Apr; 36(15):4558-67. PubMed ID: 9109665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution.
    Momany C; Ernst S; Ghosh R; Chang NL; Hackert ML
    J Mol Biol; 1995 Oct; 252(5):643-55. PubMed ID: 7563080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding.
    Almrud JJ; Oliveira MA; Kern AD; Grishin NV; Phillips MA; Hackert ML
    J Mol Biol; 2000 Jan; 295(1):7-16. PubMed ID: 10623504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering the reaction specificity of eukaryotic ornithine decarboxylase.
    Jackson LK; Brooks HB; Osterman AL; Goldsmith EJ; Phillips MA
    Biochemistry; 2000 Sep; 39(37):11247-57. PubMed ID: 10985770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure of d-Ornithine/d-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold III Decarboxylases.
    Phillips RS; Poteh P; Krajcovic D; Miller KA; Hoover TR
    Biochemistry; 2019 Feb; 58(8):1038-1042. PubMed ID: 30699288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane.
    Dufe VT; Ingner D; Heby O; Khomutov AR; Persson L; Al-Karadaghi S
    Biochem J; 2007 Jul; 405(2):261-8. PubMed ID: 17407445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple active site conformations revealed by distant site mutation in ornithine decarboxylase.
    Jackson LK; Baldwin J; Akella R; Goldsmith EJ; Phillips MA
    Biochemistry; 2004 Oct; 43(41):12990-9. PubMed ID: 15476392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate.
    Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A
    J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases.
    Lee J; Michael AJ; Martynowski D; Goldsmith EJ; Phillips MA
    J Biol Chem; 2007 Sep; 282(37):27115-27125. PubMed ID: 17626020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.
    Momany C; Ghosh R; Hackert ML
    Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps.
    Osterman AL; Brooks HB; Jackson L; Abbott JJ; Phillips MA
    Biochemistry; 1999 Sep; 38(36):11814-26. PubMed ID: 10512638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative properties of a three-dimensional model of Plasmodium falciparum ornithine decarboxylase.
    Birkholtz L; Joubert F; Neitz AW; Louw AI
    Proteins; 2003 Feb; 50(3):464-73. PubMed ID: 12557188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insight into DFMO resistant ornithine decarboxylase from Entamoeba histolytica: an inkling to adaptive evolution.
    Preeti ; Tapas S; Kumar P; Madhubala R; Tomar S
    PLoS One; 2013; 8(1):e53397. PubMed ID: 23326423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-A resolution.
    Shaw JP; Petsko GA; Ringe D
    Biochemistry; 1997 Feb; 36(6):1329-42. PubMed ID: 9063881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of catalytic determinants of diaminopimelate and ornithine decarboxylases using alternate substrates.
    Fogle EJ; Toney MD
    Biochim Biophys Acta; 2011 Sep; 1814(9):1113-9. PubMed ID: 21640851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function.
    Albeck S; Dym O; Unger T; Snapir Z; Bercovich Z; Kahana C
    Protein Sci; 2008 May; 17(5):793-802. PubMed ID: 18369191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.