BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10378309)

  • 1. [Computer modeling in the study of mechanism of catalytic activity and the structure of active site of glutamine(asparagine)ase. I. Pharmacophore models of glutamine(asparagine)ase substrates].
    Veselovskiĭ AV; Lebedeva ZI; Ivanov AS; Berezov TT
    Vopr Med Khim; 1999; 45(2):178-84. PubMed ID: 10378309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Molecular and catalytic properties of bacterial glutamin-(asparagin-)ase].
    Lebedeva ZI; Berezov TT
    Vestn Ross Akad Med Nauk; 1995; (2):57-61. PubMed ID: 7756933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants.
    Melet A; Marques-Soares C; Schoch GA; Macherey AC; Jaouen M; Dansette PM; Sari MA; Johnson EF; Mansuy D
    Biochemistry; 2004 Dec; 43(49):15379-92. PubMed ID: 15581350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression and characterisation of Erwinia carotovora L-asparaginase.
    Kotzia GA; Labrou NE
    J Biotechnol; 2005 Oct; 119(4):309-23. PubMed ID: 15951039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure modeling, ligand binding, and binding affinity calculation (LR-MM-PBSA) of human heparanase for inhibition and drug design.
    Zhou Z; Bates M; Madura JD
    Proteins; 2006 Nov; 65(3):580-92. PubMed ID: 16972282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of asparagine synthetase from Vibrio cholerae.
    Fresquet V; Thoden JB; Holden HM; Raushel FM
    Bioorg Chem; 2004 Apr; 32(2):63-75. PubMed ID: 14990305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and molecular characterization of a novel D-hydantoinase from Jannaschia sp. CCS1.
    Cai Y; Trodler P; Jiang S; Zhang W; Wu Y; Lu Y; Yang S; Jiang W
    FEBS J; 2009 Jul; 276(13):3575-88. PubMed ID: 19490017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism.
    Yoshimoto T; Tanaka N; Kanada N; Inoue T; Nakajima Y; Haratake M; Nakamura KT; Xu Y; Ito K
    J Mol Biol; 2004 Mar; 337(2):399-416. PubMed ID: 15003455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylasparaginase activity requires the alpha-carboxyl group, but not the alpha-amino group, on N(4)-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine.
    Risley JM; Huang DH; Kaylor JJ; Malik JJ; Xia YQ; York WM
    Arch Biochem Biophys; 2001 Jul; 391(2):165-70. PubMed ID: 11437347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique binding of a non-natural L,L,L-substrate by isopenicillin N synthase.
    Howard-Jones AR; Rutledge PJ; Clifton IJ; Adlington RM; Baldwin JE
    Biochem Biophys Res Commun; 2005 Oct; 336(2):702-8. PubMed ID: 16143309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of L-asparagine and N-phosphonacetyl-L-asparagine to investigate the linkage of catalysis and homotropic cooperativity in E. coli aspartate transcarbomoylase.
    Cardia JP; Eldo J; Xia J; O'Day EM; Tsuruta H; Gryncel KR; Kantrowitz ER
    Proteins; 2008 May; 71(3):1088-96. PubMed ID: 18004787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics studies of alanine racemase: a structural model for drug design.
    Mustata GI; Soares TA; Briggs JM
    Biopolymers; 2003 Oct; 70(2):186-200. PubMed ID: 14517907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu.
    Ortlund E; Lacount MW; Lewinski K; Lebioda L
    Biochemistry; 2000 Feb; 39(6):1199-204. PubMed ID: 10684596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.
    Hrmova M; Fincher GB
    Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biological properties of glutamin-(asparagin-)ase from Pseudomonas boreopolis 526].
    Pekhov AA; Zanin VA; Kozlov AM; Iurchenko AIa; Kondrat'eva NA
    Biull Eksp Biol Med; 1986 Jul; 102(7):71-4. PubMed ID: 3730598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple substrate binding states and chiral recognition in cofactor-independent glutamate racemase: a molecular dynamics study.
    Möbitz H; Bruice TC
    Biochemistry; 2004 Aug; 43(30):9685-94. PubMed ID: 15274623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QM/MM study of catalytic methyl transfer by the N5-glutamine SAM-dependent methyltransferase and its inhibition by the nitrogen analogue of coenzyme.
    Wu R; Cao Z
    J Comput Chem; 2008 Feb; 29(3):350-7. PubMed ID: 17591721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the catalytic center of porcine aminoacylase 1 by site-directed mutagenesis, homology modeling and substrate docking.
    Liu Z; Zhen Z; Zuo Z; Wu Y; Liu A; Yi Q; Li W
    J Biochem; 2006 Mar; 139(3):421-30. PubMed ID: 16567407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated interactions between angiotensin-converting enzyme and substrate gonadotropin-releasing hormone: novel insights into domain selectivity.
    Papakyriakou A; Spyroulias GA; Sturrock ED; Manessi-Zoupa E; Cordopatis P
    Biochemistry; 2007 Jul; 46(30):8753-65. PubMed ID: 17605472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.