These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10378311)

  • 1. Hyperlipidemia and renal disease: the use of animal models in understanding pathophysiology and approaches to treatment.
    Stevenson FT; Kaysen GA
    Wien Klin Wochenschr; 1999 Apr; 111(8):307-14. PubMed ID: 10378311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteinuria, hyperlipidemia, and the kidney.
    Hutchison FN
    Miner Electrolyte Metab; 1993; 19(3):127-36. PubMed ID: 8232099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic implications of lipid-lowering agents in the progression of renal disease.
    Keane WF; Kasiske BL; O'Donnell MP; Schmitz PG
    Am J Med; 1989 Nov; 87(5N):21N-24N. PubMed ID: 2486540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipids and the progression of renal disease.
    Keane WF; O'Donnell MP; Kasiske BL; Schmitz PG
    J Am Soc Nephrol; 1990 Nov; 1(5 Suppl 2):S69-74. PubMed ID: 16989069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of lipoproteins on the development and progression of renal disease.
    Dalrymple LS; Kaysen GA
    Am J Nephrol; 2008; 28(5):723-31. PubMed ID: 18434711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lipids on glomerular injury and progression of renal disease.
    Keane WF
    Verh K Acad Geneeskd Belg; 1994; 56(2):91-104. PubMed ID: 8048270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of lipid abnormalities in the pathogenesis of chronic, progressive renal disease.
    Kasiske BL; O'Donnell MP; Schmitz PG; Keane WF
    Adv Nephrol Necker Hosp; 1991; 20():109-25. PubMed ID: 2063707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lipids in the progression of renal disease in chronic renal failure: evidence from animal studies and pathogenesis.
    Shohat J; Boner G
    Isr J Med Sci; 1993 Apr; 29(4):228-39. PubMed ID: 8491578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of dietary lipids and renal eicosanoids on the progression of renal disease.
    Klahr S; Harris K
    Kidney Int Suppl; 1989 Nov; 27():S27-31. PubMed ID: 2699998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipids in progression of renal disease.
    Oda H; Keane WF
    Kidney Int Suppl; 1997 Nov; 62():S36-8. PubMed ID: 9350676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic research in rat models of kidney disease.
    Yagil Y; Yagil C
    Methods Mol Biol; 2010; 597():427-44. PubMed ID: 20013250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary soy protein reduces early renal disease progression and alters prostanoid production in obese fa/fa Zucker rats.
    Hwang SY; Taylor CG; Zahradka P; Bankovic-Calic N; Ogborn MR; Aukema HM
    J Nutr Biochem; 2008 Apr; 19(4):255-62. PubMed ID: 17656081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glomerular structures and lipids in progressive renal disease.
    Moorhead JF; Wheeler DC; Varghese Z
    Am J Med; 1989 Nov; 87(5N):12N-20N. PubMed ID: 2486539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha.
    Huang TH; Peng G; Li GQ; Yamahara J; Roufogalis BD; Li Y
    Toxicol Appl Pharmacol; 2006 Feb; 210(3):225-35. PubMed ID: 15975614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of a modified low protein and low fat diet on histologic changes and metabolism in kidneys in an experimental model of polycystic kidney disease].
    Banković-Calić N; Ogbori MR; Nicman E
    Srp Arh Celok Lek; 2002; 130(7-8):251-7. PubMed ID: 12585002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic differences in susceptibility to glomerular sclerosis: a role for lipids?
    Grond J; Muller EW; Weening JJ
    Am J Med; 1989 Nov; 87(5N):30N-33N. PubMed ID: 2486543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term protection of obese Zucker rat kidneys from fibrosis and renal failure with an angiotensin-converting enzyme inhibitor/diuretic combination.
    Renaud IM; Chainey A; Belair MF; Mandet C; Michel O; Myara I; Chevalier J; Plante GE
    Fundam Clin Pharmacol; 2004 Aug; 18(4):437-47. PubMed ID: 15312150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YM440, a novel hypoglycemic agent, protects against nephropathy in Zucker fatty rats via plasma triglyceride reduction.
    Nakano R; Kurosaki E; Shimaya A; Kajikawa S; Shibasaki M
    Eur J Pharmacol; 2006 Nov; 549(1-3):185-91. PubMed ID: 16989806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rodent models of nephropathy associated with type II diabetes.
    Janssen U; Phillips AO; Floege J
    J Nephrol; 1999; 12(3):159-72. PubMed ID: 10440513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperphagia as a mediator of renal disease initiation in obese Zucker rats.
    Stevenson FT; Wheeldon CM; Gades MD; van Goor H; Stern JS
    Obes Res; 2001 Aug; 9(8):492-9. PubMed ID: 11500530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.