These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

673 related articles for article (PubMed ID: 10378874)

  • 1. Subcutaneous administration of T-epitope sequences of the acetylcholine receptor prevents experimental myasthenia gravis.
    Karachunski PI; Ostlie NS; Okita DK; Garman R; Conti-Fine BM
    J Neuroimmunol; 1999 Jan; 93(1-2):108-21. PubMed ID: 10378874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences.
    Karachunski PI; Ostlie NS; Okita DK; Conti-Fine BM
    J Clin Invest; 1997 Dec; 100(12):3027-35. PubMed ID: 9399949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic expression of IL-10 in T cells facilitates development of experimental myasthenia gravis.
    Ostlie NS; Karachunski PI; Wang W; Monfardini C; Kronenberg M; Conti-Fine BM
    J Immunol; 2001 Apr; 166(8):4853-62. PubMed ID: 11290761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-4 deficiency facilitates development of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4+ epitope sequences of the acetylcholine receptor.
    Karachunski PI; Ostlie NS; Okita DK; Conti-Fine BM
    J Neuroimmunol; 1999 Mar; 95(1-2):73-84. PubMed ID: 10229117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nasal administration of synthetic acetylcholine receptor T epitopes affects the immune response to the acetylcholine receptor and prevents experimental myasthenia gravis.
    Karachunski PI; Ostlie NS; Okita DK; Conti-Fine BM
    Ann N Y Acad Sci; 1998 May; 841():560-4. PubMed ID: 9668295
    [No Abstract]   [Full Text] [Related]  

  • 6. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146-162 of acetylcholine receptor.
    Shenoy M; Oshima M; Atassi MZ; Christadoss P
    Clin Immunol Immunopathol; 1993 Mar; 66(3):230-8. PubMed ID: 7679342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The susceptibility to experimental myasthenia gravis of STAT6-/- and STAT4-/- BALB/c mice suggests a pathogenic role of Th1 cells.
    Wang W; Ostlie NS; Conti-Fine BM; Milani M
    J Immunol; 2004 Jan; 172(1):97-103. PubMed ID: 14688314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fas/Fas ligand pathway, apoptosis, and clonal anergy involved in systemic acetylcholine receptor T cell epitope tolerance.
    Deng C; Goluszko E; Christadoss P
    J Immunol; 2001 Mar; 166(5):3458-67. PubMed ID: 11207304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice.
    Karachunski PI; Ostlie NS; Monfardini C; Conti-Fine BM
    J Immunol; 2000 May; 164(10):5236-44. PubMed ID: 10799884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor.
    Wang ZY; Qiao J; Link H
    J Neuroimmunol; 1993 May; 44(2):209-14. PubMed ID: 8505410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention of experimental autoimmune myasthenia gravis by manipulation of the immune network with a complementary peptide for the acetylcholine receptor.
    Araga S; LeBoeuf RD; Blalock JE
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8747-51. PubMed ID: 8378359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of anti-acetylcholine receptor antibody specificities and of experimental autoimmune myasthenia gravis by synthetic peptides.
    Souroujon MC; Carmon S; Fuchs S
    Immunol Lett; 1992 Sep; 34(1):19-25. PubMed ID: 1282497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms by which the I-ABM12 mutation influences susceptibility to experimental myasthenia gravis: a study in homozygous and heterozygous mice.
    Karachunski PI; Ostlie N; Bellone M; Infante AJ; Conti-Fine BM
    Scand J Immunol; 1995 Aug; 42(2):215-25. PubMed ID: 7631155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice.
    Ostlie N; Milani M; Wang W; Okita D; Conti-Fine BM
    J Immunol; 2003 Jan; 170(1):604-12. PubMed ID: 12496449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis.
    Wang HB; Shi FD; Li H; Chambers BJ; Link H; Ljunggren HG
    J Immunol; 2001 May; 166(10):6430-6. PubMed ID: 11342669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic peptides fail to induce nasal tolerance to experimental autoimmune myasthenia gravis.
    Zhang GX; Shi FD; Zhu J; Xiao BG; Levi M; Wahren B; Yu LY; Link H
    J Neuroimmunol; 1998 May; 85(1):96-101. PubMed ID: 9627002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residues within the alpha subunit sequence 304-322 of muscle acetylcholine receptor forming autoimmune CD4+ epitopes in BALB/c mice.
    Karachunski PI; Ostlie N; Conti-Tronconi BM; Bellone M
    Immunology; 1994 May; 82(1):22-7. PubMed ID: 7519170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B cell responses to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis.
    Wang ZY; Huang J; Olsson T; He B; Link H
    J Neurol Sci; 1995 Feb; 128(2):167-74. PubMed ID: 7537794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T cell responses in EAMG-susceptible and non-susceptible mouse strains after immunization with overlapping peptides encompassing the extracellular part of Torpedo californica acetylcholine receptor alpha chain. Implication to role in myasthenia gravis of autoimmune T-cell responses against receptor degradation products.
    Oshima M; Yokoi T; Deitiker P; Atassi MZ
    Autoimmunity; 1998; 27(2):79-90. PubMed ID: 9583739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.