These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 10379027)
1. Extraction of TNT from aggregate soil fractions. Williford CW; Mark Bricka R J Hazard Mater; 1999 Apr; 66(1-2):1-13. PubMed ID: 10379027 [TBL] [Abstract][Full Text] [Related]
2. TNT and RDX degradation and extraction from contaminated soil using subcritical water. Islam MN; Shin MS; Jo YT; Park JH Chemosphere; 2015 Jan; 119():1148-1152. PubMed ID: 25460755 [TBL] [Abstract][Full Text] [Related]
3. Development of a soil extraction procedure for ecotoxicity characterization of energetic compounds. Sunahara GI; Dodard S; Sarrazin M; Paquet L; Ampleman G; Thiboutot S; Hawari J; Renoux AY Ecotoxicol Environ Saf; 1998 Mar; 39(3):185-94. PubMed ID: 9570909 [TBL] [Abstract][Full Text] [Related]
4. Detection of 2,4,6-trinitrotoluene in environmental samples using a homogeneous fluoroimmunoassay. Goldman ER; Cohill TJ; Patterson CH; Anderson GP; Kusterbeck AW; Mauro JM Environ Sci Technol; 2003 Oct; 37(20):4733-6. PubMed ID: 14594385 [TBL] [Abstract][Full Text] [Related]
5. Ecotoxicological characterization of energetic substances using a soil extraction procedure. Sunahara GI; Dodard S; Sarrazin M; Paquet L; Hawari J; Greer CW; Ampleman G; Thiboutot S; Renoux AY Ecotoxicol Environ Saf; 1999 Jun; 43(2):138-48. PubMed ID: 10375416 [TBL] [Abstract][Full Text] [Related]
7. Comment on "Optimized microwave extraction for trace detection of 2,4,6-trinitrotoluene in soil samples" [Chemosphere 71(9) (2008) 1701-1708]. Beyene NW Chemosphere; 2008 Nov; 73(9):1570-2; discussion 1573. PubMed ID: 18834615 [No Abstract] [Full Text] [Related]
8. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806 [TBL] [Abstract][Full Text] [Related]
9. Explosive detonation causes an increase in soil porosity leading to increased TNT transformation. Yu HA; Nic Daeid N; Dawson LA; DeTata DA; Lewis SW PLoS One; 2017; 12(12):e0189177. PubMed ID: 29281650 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. Clark B; Boopathy R J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260 [TBL] [Abstract][Full Text] [Related]
11. Degradation of trinitrotoluene in contaminated soils as affected by its initial concentrations and its binding to soil organic matter fractions. Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Mar; 43(4):348-56. PubMed ID: 18273739 [TBL] [Abstract][Full Text] [Related]
12. Effects of particulate explosives on estimating contamination at a historical explosives testing area. Radtke CW; Gianotto D; Roberto FF Chemosphere; 2002 Jan; 46(1):3-9. PubMed ID: 11806529 [TBL] [Abstract][Full Text] [Related]
13. Mobility and bioavailability reduction of soil TNT via sorption enhancement using monopotassium phosphate. Jung JW; Nam K J Hazard Mater; 2014 Jun; 275():26-30. PubMed ID: 24835687 [TBL] [Abstract][Full Text] [Related]
14. Optimized microwave extraction for trace detection of 2,4,6-trinitrotoluene in soil samples. Kjellström A; Brantlind M; Eldsäter C Chemosphere; 2008 Apr; 71(9):1701-8. PubMed ID: 18289633 [TBL] [Abstract][Full Text] [Related]
15. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Alizadeh T; Zare M; Ganjali MR; Norouzi P; Tavana B Biosens Bioelectron; 2010 Jan; 25(5):1166-72. PubMed ID: 19892541 [TBL] [Abstract][Full Text] [Related]
16. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water. Kalderis D; Hawthorne SB; Clifford AA; Gidarakos E J Hazard Mater; 2008 Nov; 159(2-3):329-34. PubMed ID: 18384944 [TBL] [Abstract][Full Text] [Related]
17. Explosives detection in soil using a field-portable continuous flow immunosensor. Gauger PR; Holt DB; Patterson CH; Charles PT; Shriver-Lake L; Kusterbeck AW J Hazard Mater; 2001 May; 83(1-2):51-63. PubMed ID: 11267745 [TBL] [Abstract][Full Text] [Related]
18. Plant tissue analysis for explosive compounds in phytoremediation and phytoforensics. Karnjanapiboonwong A; Mu R; Yuan Y; Shi H; Ma Y; Burken JG J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(14):2219-29. PubMed ID: 22934993 [TBL] [Abstract][Full Text] [Related]
19. Determination of explosives in soil and ground water by liquid chromatography-amperometric detection. Hilmi A; Luong JH; Nguyen AL J Chromatogr A; 1999 Jun; 844(1-2):97-110. PubMed ID: 10399326 [TBL] [Abstract][Full Text] [Related]
20. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces. Jaramillo AM; Douglas TA; Walsh ME; Trainor TP Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]