These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 10379267)

  • 1. Failure and fracture characteristics of glass poly(vinylphosphonate) cements.
    Fennell B; Hill RG; Akinmade A
    Dent Mater; 1998 Sep; 14(5):358-64. PubMed ID: 10379267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of dental luting cements.
    Li ZC; White SN
    J Prosthet Dent; 1999 May; 81(5):597-609. PubMed ID: 10220666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro investigation of a poly(vinyl phosphonic acid) based cement with four conventional glass-ionomer cements. Part 1: Flexural strength and fluoride release.
    Khouw-Liu VH; Anstice HM; Pearson GJ
    J Dent; 1999 Jul; 27(5):351-7. PubMed ID: 10377610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel hyperbranched poly(acrylic acid) for improved resin-modified glass-ionomer restoratives.
    Zhao J; Xie D
    Dent Mater; 2011 May; 27(5):478-86. PubMed ID: 21377199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of failure mechanisms for cements used in skeletal luting applications.
    Clarkin O; Boyd D; Towler MR
    J Mater Sci Mater Med; 2009 Aug; 20(8):1585-94. PubMed ID: 19283454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural strength and modulus of a novel ceramic restorative cement intended for posterior restorations as determined by a three-point bending test.
    Sunnegårdh-Grönberg K; Peutzfeldt A; van Dijken JW
    Acta Odontol Scand; 2003 Apr; 61(2):87-92. PubMed ID: 12790505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties.
    Moshaverinia A; Ansari S; Movasaghi Z; Billington RW; Darr JA; Rehman IU
    Dent Mater; 2008 Oct; 24(10):1381-90. PubMed ID: 18433855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel self-healing dental luting cements with microcapsules for indirect restorations.
    Wu J; Zhang Q; Weir MD; Oates TW; Zhou C; Chang X; Xu HHK
    J Dent; 2017 Nov; 66():76-82. PubMed ID: 28826985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory strength of glass ionomer cement, compomers, and resin composites.
    Piwowarczyk A; Ottl P; Lauer HC; Büchler A
    J Prosthodont; 2002 Jun; 11(2):86-91. PubMed ID: 12087545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a high fracture toughness composite ceramic for dental applications.
    Aboushelib MN; Kleverlaan CJ; Feilzer AJ
    J Prosthodont; 2008 Oct; 17(7):538-44. PubMed ID: 18761572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic behavior and fracture toughness of six glass-ionomer cements.
    Yamazaki T; Schricker SR; Brantley WA; Culbertson BM; Johnston W
    J Prosthet Dent; 2006 Oct; 96(4):266-72. PubMed ID: 17052471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the flexural strength of six reinforced restorative materials.
    Cohen BI; Volovich Y; Musikant BL; Deutsch AS
    Gen Dent; 2001; 49(5):484-8. PubMed ID: 12017792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of mineral trioxide aggregate. Physical and mechanical properties.
    Camilleri J
    Int Endod J; 2008 Oct; 41(10):843-9. PubMed ID: 18699790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements.
    Moshaverinia A; Brantley WA; Chee WW; Rohpour N; Ansari S; Zheng F; Heshmati RH; Darr JA; Schricker SR; Rehman IU
    Dent Mater; 2010 Dec; 26(12):1137-43. PubMed ID: 20851458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison study on the flexural strength and compressive strength of four resin-modified luting glass ionomer cements.
    Li Y; Lin H; Zheng G; Zhang X; Xu Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S9-17. PubMed ID: 26406090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile bond strength and flexural modulus of resin cements--influence on the fracture resistance of teeth restored with ceramic inlays.
    Habekost Lde V; Camacho GB; Demarco FF; Powers JM
    Oper Dent; 2007; 32(5):488-95. PubMed ID: 17910226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations.
    Cesar PF; Miranda WG; Braga RR
    J Prosthet Dent; 2001 Sep; 86(3):289-96. PubMed ID: 11552166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Fracture Resistance and Stiffness of Heat-Polymerized High Impact Acrylic Resin with Localized E-Glass FiBER FORCE® Reinforcement at Different Stress Points.
    Agha H; Flinton R; Vaidyanathan T
    J Prosthodont; 2016 Dec; 25(8):647-655. PubMed ID: 26990705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between fracture load of zirconia implant supported single crowns and mechanical properties of restorative material and cement.
    Rohr N; Märtin S; Fischer J
    Dent Mater J; 2018 Mar; 37(2):222-228. PubMed ID: 29176305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.