BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 10379650)

  • 1. Photoreactivation of the cytochrome oxidase complex with cyanide: the reaction of heme a3 photoreduction.
    Konev SV; Beljanovich LM; Rudenok AN
    Membr Cell Biol; 1998; 12(5):743-54. PubMed ID: 10379650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreactions of cytochrome C oxidase.
    Winterle JS; Einarsdóttir O
    Photochem Photobiol; 2006; 82(3):711-9. PubMed ID: 16789843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of reduction of heme a and Cu(A) on the oxidized catalytic center of cytochrome c oxidase: insight from organic solvents.
    Fabian M; Jancura D; Bona M; Musatov A; Baran M; Palmer G
    Biochemistry; 2006 Apr; 45(13):4277-83. PubMed ID: 16566602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate cytochrome c derivatives.
    Kotlyar AB; Borovok N; Hazani M
    Biochemistry; 1997 Dec; 36(50):15828-33. PubMed ID: 9398314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in <--H+/e- ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser.
    Pastore D; Greco M; Petragallo VA; Passarella S
    Biochem Mol Biol Int; 1994 Oct; 34(4):817-26. PubMed ID: 7866309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton interactions with hemes a and a3 in bovine heart cytochrome c oxidase.
    Parul D; Palmer G; Fabian M
    Biochemistry; 2005 Mar; 44(11):4562-71. PubMed ID: 15766287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Membrane control of the photodeblocking reaction of cytochrome oxidase in the mitochondrial electron transport chain].
    Konev SV; Rudenok AN; Vybiranets LM
    Biofizika; 1993; 38(6):1043-6. PubMed ID: 8274508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton and electron transfer during the reduction of molecular oxygen by fully reduced cytochrome c oxidase: a flow-flash investigation using optical multichannel detection.
    Paula S; Sucheta A; Szundi I; Einarsdóttir O
    Biochemistry; 1999 Mar; 38(10):3025-33. PubMed ID: 10074355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis.
    Hill BC; Peterson J
    Arch Biochem Biophys; 1998 Feb; 350(2):273-82. PubMed ID: 9473302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of a novel transient ferryl complex with reduced CuB in cytochrome c oxidase.
    Zaslavsky D; Smirnova IA; Adelroth P; Brzezinski P; Gennis RB
    Biochemistry; 1999 Feb; 38(8):2307-11. PubMed ID: 10029523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state.
    Siletsky S; Kaulen AD; Konstantinov AA
    Biochemistry; 1999 Apr; 38(15):4853-61. PubMed ID: 10200174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-linked conformational changes in bovine heart cytochrome c oxidase: picosecond time-resolved fluorescence studies of cyanide complex.
    Das TK; Mazumdar S
    Biopolymers; 2000; 57(5):316-22. PubMed ID: 10958323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of thyroid hormone state on the activity of cytochrome oxidase isolated from rat liver.
    Altamura N; Lippolis R; Castaldo R; Landriscina C
    Boll Soc Ital Biol Sper; 1987 Mar; 63(3):181-7. PubMed ID: 2820440
    [No Abstract]   [Full Text] [Related]  

  • 15. Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH.
    Capitanio N; Capitanio G; Demarinis DA; De Nitto E; Massari S; Papa S
    Biochemistry; 1996 Aug; 35(33):10800-6. PubMed ID: 8718871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase.
    Lepp H; Svahn E; Faxén K; Brzezinski P
    Biochemistry; 2008 Apr; 47(17):4929-35. PubMed ID: 18393448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The location of CuA in mammalian cytochrome c oxidase.
    Rich PR; West IC; Mitchell P
    FEBS Lett; 1988 Jun; 233(1):25-30. PubMed ID: 2454843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman study on photoreduction of cytochrome c oxidase: distinction of cytochromes a and a3 in the intermediate oxidation states.
    Ogura T; Yoshikawa S; Kitagawa T
    Biochemistry; 1985 Dec; 24(26):7746-52. PubMed ID: 3004564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB.
    Wrigglesworth JM; Elsden J; Chapman A; Van der Water N; Grahn MF
    Biochim Biophys Acta; 1988 Dec; 936(3):452-64. PubMed ID: 2848581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and ligand binding evidence for two heme A-based terminal oxidases in plasma membranes from Bacillus subtilis.
    Hill BC; Vo L; Albanese J
    Arch Biochem Biophys; 1993 Feb; 301(1):129-37. PubMed ID: 8382904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.