These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10380198)

  • 1. Time and memory efficient algorithm for extracting palindromic and repetitive subsequences in nucleic acid sequences.
    Tsunoda T; Fukagawa M; Takagi T
    Pac Symp Biocomput; 1999; ():202-13. PubMed ID: 10380198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of repetitive regions in sequences by optimizing a compression method.
    Delgrange O; Dauchet M; Rivals E
    Pac Symp Biocomput; 1999; ():254-65. PubMed ID: 10380202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum A posteriori classification of DNA structure from sequence information.
    Loewenstern DM; Berman HM; Hirsh H
    Pac Symp Biocomput; 1998; ():669-80. PubMed ID: 9697221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding Statistically Significant Repeats in Nucleic Acids and Proteins.
    Jelovic AM; Mitic NS; Eshafah S; Beljanski MV
    J Comput Biol; 2018 Apr; 25(4):375-387. PubMed ID: 29272145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using suffix tree to discover complex repetitive patterns in DNA sequences.
    He D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3474-7. PubMed ID: 17945779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SeqHelp: a program to analyze molecular sequences utilizing common computational resources.
    Lee MK; Lynch ED; King MC
    Genome Res; 1998 Mar; 8(3):306-12. PubMed ID: 9521933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed protein sequence alignment based on Spectral Similarity Score (SSS).
    Gupta K; Thomas D; Vidya SV; Venkatesh KV; Ramakumar S
    BMC Bioinformatics; 2005 Apr; 6():105. PubMed ID: 15850477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A clustering method for repeat analysis in DNA sequences.
    Volfovsky N; Haas BJ; Salzberg SL
    Genome Biol; 2001; 2(8):RESEARCH0027. PubMed ID: 11532211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New method for yeast identification using Burrows-Wheeler transform.
    Pokrzywa R
    J Bioinform Comput Biol; 2008 Apr; 6(2):403-13. PubMed ID: 18464330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory efficient alignment between RNA sequences and stochastic grammar models of pseudoknots.
    Song Y; Liu C; Malmberg RL; He C; Cai L
    Int J Bioinform Res Appl; 2006; 2(3):289-304. PubMed ID: 18048167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STRIRED: graphical analysis of string repeats.
    Iazzetti G; Chiusano ML; Calogero RA
    Bioinformatics; 1998; 14(2):221-2. PubMed ID: 9545457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATA: a graphic alignment tool for comparative sequence analysis.
    Nix DA; Eisen MB
    BMC Bioinformatics; 2005 Jan; 6():9. PubMed ID: 15655071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tale of two symmetrical tails: structural and functional characteristics of palindromes in proteins.
    Sheari A; Kargar M; Katanforoush A; Arab S; Sadeghi M; Pezeshk H; Eslahchi C; Marashi SA
    BMC Bioinformatics; 2008 Jun; 9():274. PubMed ID: 18547401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probabilistic approach to consensus multiple alignment.
    Lazareva-Ulitsky B; Haussler D
    Pac Symp Biocomput; 1999; ():150-61. PubMed ID: 10380193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective large-scale sequence similarity searches.
    Claverie JM
    Methods Enzymol; 1996; 266():212-27. PubMed ID: 8743687
    [No Abstract]   [Full Text] [Related]  

  • 19. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.
    Cao Y; Tung WW; Gao JB; Qi Y
    J Bioinform Comput Biol; 2005 Jun; 3(3):677-96. PubMed ID: 16108089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient alignment algorithm for searching simple pseudoknots over long genomic sequence.
    Ma C; Wong TK; Lam TW; Hon WK; Sadakane K; Yiu SM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1629-38. PubMed ID: 22848134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.