BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10380348)

  • 1. Design of protease inhibitors on the basis of substrate stereospecificity.
    Kim DH
    Biopolymers; 1999; 51(1):3-8. PubMed ID: 10380348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of papain with 2-benzyl-3,4-epoxybutanoic acid esters. Mechanistic and stereochemical probe for cysteine protease catalysis.
    Kim DH; Jin Y; Ryu CH
    Bioorg Med Chem; 1997 Nov; 5(11):2103-8. PubMed ID: 9416427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin.
    Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y
    J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From good substrates to good inhibitors: design of inhibitors for serine and thiol proteases.
    Baggio R; Shi YQ; Wu YQ; Abeles
    Biochemistry; 1996 Mar; 35(11):3351-3. PubMed ID: 8639483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate variants versus transition state analogues as noncovalent reversible enzyme inhibitors.
    Smyth TP
    Bioorg Med Chem; 2004 Aug; 12(15):4081-8. PubMed ID: 15246086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of cysteine proteases by peptides containing aziridine-2,3-dicarboxylic acid building blocks.
    Schirmeister T
    Biopolymers; 1999; 51(1):87-97. PubMed ID: 10380356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicted three-dimensional structural models of venom serine protease inhibitors and their interactions with trypsin and chymotrypsin.
    Azim MK; Grossmann JG; Zaidi ZH
    J Nat Toxins; 1999 Oct; 8(3):363-84. PubMed ID: 10591040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking studies and model development of tea polyphenol proteasome inhibitors: applications to rational drug design.
    Smith DM; Daniel KG; Wang Z; Guida WC; Chan TH; Dou QP
    Proteins; 2004 Jan; 54(1):58-70. PubMed ID: 14705024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Enzyme activities of native non-enzymatically glucosylated trypsin, chymotrypsin and papain].
    Coradello H; Lubec G; Pollak A; Sternberg M
    Padiatr Padol; 1982; 17(2):457-64. PubMed ID: 7099695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria.
    Thakurta PG; Biswas S; Chakrabarti C; Sundd M; Jagannadham MV; Dattagupta JK
    Biochemistry; 2004 Feb; 43(6):1532-40. PubMed ID: 14769029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereospecific alkylation of cis-3-chloroacrylic acid dehalogenase by (R)-oxirane-2-carboxylate: analysis and mechanistic implications.
    Poelarends GJ; Serrano H; Johnson WH; Whitman CP
    Biochemistry; 2004 Jun; 43(22):7187-96. PubMed ID: 15170356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.
    Petrillo T; O'Donohoe CA; Howe N; Malthouse JP
    Biochemistry; 2012 Aug; 51(31):6164-70. PubMed ID: 22757750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting and designing inhibitor selectivity determinants at the S1 site using an artificial Ala190 protease (Ala190 uPA).
    Katz BA; Luong C; Ho JD; Somoza JR; Gjerstad E; Tang J; Williams SR; Verner E; Mackman RL; Young WB; Sprengeler PA; Chan H; Mortara K; Janc JW; McGrath ME
    J Mol Biol; 2004 Nov; 344(2):527-47. PubMed ID: 15522303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.
    Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U
    J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6.
    Ellis SW; Hayhurst GP; Lightfoot T; Smith G; Harlow J; Rowland-Yeo K; Larsson C; Mahling J; Lim CK; Wolf CR; Blackburn MG; Lennard MS; Tucker GT
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
    Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI
    Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities.
    Pletnev VZ; Zamolodchikova TS; Pangborn WA; Duax WL
    Proteins; 2000 Oct; 41(1):8-16. PubMed ID: 10944388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure.
    Lang R; Kocourek A; Braun M; Tschesche H; Huber R; Bode W; Maskos K
    J Mol Biol; 2001 Sep; 312(4):731-42. PubMed ID: 11575928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection.
    Njoroge FG; Chen KX; Shih NY; Piwinski JJ
    Acc Chem Res; 2008 Jan; 41(1):50-9. PubMed ID: 18193821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.