BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10380649)

  • 1. Phenol degradation by an enterobacterium: a Klebsiella strain carries a TOL-like plasmid and a gene encoding a novel phenol hydroxylase.
    Heesche-Wagner K; Schwarz T; Kaufmann M
    Can J Microbiol; 1999 Feb; 45(2):162-71. PubMed ID: 10380649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and partial characterization of extracellular NADPH-dependent phenol hydroxylase oxidizing phenol to catechol in Comamonas testosteroni.
    Turek M; Vilimkova L; Kremlackova V; Paca J; Halecky M; Paca J; Stiborova M
    Neuro Endocrinol Lett; 2011; 32 Suppl 1():137-45. PubMed ID: 22167219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes.
    Merimaa M; Heinaru E; Liivak M; Vedler E; Heinaru A
    Arch Microbiol; 2006 Oct; 186(4):287-96. PubMed ID: 16906406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1.
    Saa L; Jaureguibeitia A; Largo E; Llama MJ; Serra JL
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):201-11. PubMed ID: 19787347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a meta-cleavage pathway for metabolism of phenoxyacetic acid and phenol in Pseudomonas cepacia AC1100.
    Ghadi SC; Sangodkar UM
    Biochem Biophys Res Commun; 1994 Oct; 204(2):983-93. PubMed ID: 7526858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes.
    Tuan NN; Hsieh HC; Lin YW; Huang SL
    Bioresour Technol; 2011 Mar; 102(5):4232-40. PubMed ID: 21227686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration.
    Hupert-Kocurek K; Guzik U; Wojcieszyńska D
    Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading.
    Jiang HL; Tay JH; Tay ST
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):602-8. PubMed ID: 12802532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat.
    Thakur IS; Verma P; Upadhayaya K
    Biochem Biophys Res Commun; 2002 Jan; 290(2):770-4. PubMed ID: 11785966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation.
    Arai H; Akahira S; Ohishi T; Maeda M; Kudo T
    Microbiology (Reading); 1998 Oct; 144 ( Pt 10)():2895-2903. PubMed ID: 9802031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia].
    Vacca GS; Kiesel B; Wünsche L; Pucci OH
    Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: comparison with analogous enzymes of the ordinary and modified ortho-cleavage pathways.
    Solyanikova IP; Golovlev EL; Lisnyak OV; Golovleva LA
    Biochemistry (Mosc); 1999 Jul; 64(7):824-31. PubMed ID: 10424908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.
    Jiang Y; Wen J; Bai J; Jia X; Hu Z
    J Hazard Mater; 2007 Aug; 147(1-2):672-6. PubMed ID: 17597295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301.
    Bae HS; Lee JM; Kim YB; Lee ST
    Biodegradation; 1996-1997; 7(6):463-9. PubMed ID: 9188195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmid-mediated degradation of o-phthalate and salicylate by a Moraxella sp.
    Rani M; Prakash D; Sobti RC; Jain RK
    Biochem Biophys Res Commun; 1996 Mar; 220(2):377-81. PubMed ID: 8645313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system.
    Zhang X; Gao P; Chao Q; Wang L; Senior E; Zhao L
    FEMS Microbiol Lett; 2004 Aug; 237(2):369-75. PubMed ID: 15321685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.