BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10380803)

  • 1. Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods.
    Ha S; Moore PH; Heinz D; Kato S; Ohmido N; Fukui K
    Plant Mol Biol; 1999 Apr; 39(6):1165-73. PubMed ID: 10380803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum.
    Meng Z; Han J; Lin Y; Zhao Y; Lin Q; Ma X; Wang J; Zhang M; Zhang L; Yang Q; Wang K
    Theor Appl Genet; 2020 Jan; 133(1):187-199. PubMed ID: 31587087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis.
    Zhang ZT; Yang SQ; Li ZA; Zhang YX; Wang YZ; Cheng CY; Li J; Chen JF; Lou QF
    Genome; 2016 Jul; 59(7):449-57. PubMed ID: 27334092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Karyotyping in melon (Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization.
    Liu C; Liu J; Li H; Zhang Z; Han Y; Huang S; Jin W
    Cytogenet Genome Res; 2010 Jul; 129(1-3):241-9. PubMed ID: 20551614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics.
    D'Hont A; Grivet L; Feldmann P; Rao S; Berding N; Glaszmann JC
    Mol Gen Genet; 1996 Mar; 250(4):405-13. PubMed ID: 8602157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass.
    Young HA; Sarath G; Tobias CM
    BMC Plant Biol; 2012 Jul; 12():117. PubMed ID: 22834676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv.
    Hasterok R; Draper J; Jenkins G
    Chromosome Res; 2004; 12(4):397-403. PubMed ID: 15241018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution.
    Paesold S; Borchardt D; Schmidt T; Dechyeva D
    Plant J; 2012 Nov; 72(4):600-11. PubMed ID: 22775355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).
    Ohmido N; Iwata A; Kato S; Wako T; Fukui K
    PLoS One; 2018; 13(4):e0195710. PubMed ID: 29672536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of the N-genome in diploid and polyploid Aegilops species.
    Badaeva ED; Dedkova OS; Zoshchuk SA; Amosova AV; Reader SM; Bernard M; Zelenin AV
    Chromosome Res; 2011 May; 19(4):541-8. PubMed ID: 21556954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization.
    Koo DH; Plaha P; Lim YP; Hur Y; Bang JW
    Theor Appl Genet; 2004 Nov; 109(7):1346-52. PubMed ID: 15365626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensively Characterizing the Cytological Features of
    Meng Z; Zhang Z; Yan T; Lin Q; Wang Y; Huang W; Huang Y; Li Z; Yu Q; Wang J; Wang K
    Front Plant Sci; 2018; 9():1624. PubMed ID: 30459801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FISH-aimed karyotype analysis in Aconitum subgen. Aconitum reveals excessive rDNA sites in tetraploid taxa.
    Joachimiak AJ; Hasterok R; Sliwinska E; Musiał K; Grabowska-Joachimiak A
    Protoplasma; 2018 Sep; 255(5):1363-1372. PubMed ID: 29541843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Karyotype and chromosome location of characteristic tandem repeats in the pufferfish Tetraodon nigroviridis.
    Fischer C; Ozouf-Costaz C; Roest Crollius H; Dasilva C; Jaillon O; Bouneau L; Bonillo C; Weissenbach J; Bernot A
    Cytogenet Cell Genet; 2000; 88(1-2):50-5. PubMed ID: 10773665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of rDNA sites in sugarcane by FISH.
    Jenkin MJ; Reader SM; Purdie KA; Miller TE
    Chromosome Res; 1995 Nov; 3(7):444-5. PubMed ID: 8528591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugarcane genome architecture decrypted with chromosome-specific oligo probes.
    Piperidis N; D'Hont A
    Plant J; 2020 Sep; 103(6):2039-2051. PubMed ID: 32537783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of FISH oligo-5S rDNA and oligo-(AGGGTTT)
    Luo X; He Z
    Genome; 2021 Jun; 64(6):655-664. PubMed ID: 33797299
    [No Abstract]   [Full Text] [Related]  

  • 18. Genome remodelling in three modern S. officinarumxS. spontaneum sugarcane cultivars.
    Cuadrado A; Acevedo R; Moreno Díaz de la Espina S; Jouve N; de la Torre C
    J Exp Bot; 2004 Apr; 55(398):847-54. PubMed ID: 14990623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes.
    Xu J; Earle ED
    Chromosoma; 1996 Jun; 104(8):545-50. PubMed ID: 8662247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of the hexaploid grass Zingeriakochii (Mez) Tzvel. (2n=12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA.
    Kotseruba V; Pistrick K; Blattner FR; Kumke K; Weiss O; Rutten T; Fuchs J; Endo T; Nasuda S; Ghukasyan A; Houben A
    Mol Phylogenet Evol; 2010 Jul; 56(1):146-55. PubMed ID: 20060916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.