BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10381622)

  • 21. Spectroscopy of non-photochemical and photochemical quenching of chlorophyll fluorescence in leaves; evidence for a role of the light harvesting complex of Photosystem II in the regulation of energy dissipation.
    Ruban AV; Horton P
    Photosynth Res; 1994 May; 40(2):181-90. PubMed ID: 24311287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I.
    Croce R; Mozzo M; Morosinotto T; Romeo A; Hienerwadel R; Bassi R
    Biochemistry; 2007 Mar; 46(12):3846-55. PubMed ID: 17326666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorophyll limitation in plants remodels and balances the photosynthetic apparatus by changing the accumulation of photosystems I and II through two different approaches.
    Hansson A; Jensen PE
    Physiol Plant; 2009 Feb; 135(2):214-28. PubMed ID: 19055541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Mechanism of photochemical oxidation of bacterioviridin].
    Kim VA; Elfimov EI; Vozniak VM; Evstigneev VB
    Biofizika; 1976; 21(1):50-4. PubMed ID: 1252535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy.
    Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ
    Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Singlet oxygen production in photosynthesis.
    Krieger-Liszkay A
    J Exp Bot; 2005 Jan; 56(411):337-46. PubMed ID: 15310815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox functions of carotenoids in photosynthesis.
    Frank HA; Brudvig GW
    Biochemistry; 2004 Jul; 43(27):8607-15. PubMed ID: 15236568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser-induced quenched phosphorescence detection in capillary electrophoresis.
    Kuijt J; Ariese F; Brinkman UA; Gooijer C
    Electrophoresis; 2003 Apr; 24(7-8):1193-9. PubMed ID: 12707911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.
    Belyaeva OB; Litvin FF
    Biochemistry (Mosc); 2015 Dec; 80(13):1716-22. PubMed ID: 26878576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states.
    Nabe H; Funabiki R; Kashino Y; Koike H; Satoh K
    Plant Cell Physiol; 2007 Nov; 48(11):1548-57. PubMed ID: 17908696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-directed mutations at D1-Thr179 of photosystem II in Synechocystis sp. PCC 6803 modify the spectroscopic properties of the accessory chlorophyll in the D1-branch of the reaction center.
    Schlodder E; Renger T; Raszewski G; Coleman WJ; Nixon PJ; Cohen RO; Diner BA
    Biochemistry; 2008 Mar; 47(10):3143-54. PubMed ID: 18278871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radicals in primary photobiological processes.
    Vladimirov YA
    Membr Cell Biol; 1998; 12(5):645-63. PubMed ID: 10379646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photochemical study of [3(3)](1,3,5)cyclophane and emission spectral properties of [3n]cyclophanes (n = 2-6).
    Nogita R; Matohara K; Yamaji M; Oda T; Sakamoto Y; Kumagai T; Lim C; Yasutake M; Shimo T; Jefford CW; Shinmyozu T
    J Am Chem Soc; 2004 Oct; 126(42):13732-41. PubMed ID: 15493932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Phosphorescence of octaethylchlorine, isobacteriooctaethylchlorine and their metal complexes].
    Gradiushko AT; Solov'ev KN; Turkova AE; Tsvirko MP
    Biofizika; 1975; 20(4):602-7. PubMed ID: 1201290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence.
    Krasnovsky AA; Neverov KV; Egorov SYu ; Roeder B; Levald T
    J Photochem Photobiol B; 1990 Apr; 5(2):245-54. PubMed ID: 2111399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.
    Jockusch S; Turro NJ; Banala S; Kräutler B
    Photochem Photobiol Sci; 2014 Feb; 13(2):407-11. PubMed ID: 24398916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorescence study of chlorophyll d photophysics. Determination of the energy and lifetime of the photo-excited triplet state. Evidence of singlet oxygen photosensitization.
    Neverov KV; Santabarbara S; Krasnovsky AA
    Photosynth Res; 2011 Sep; 108(2-3):101-6. PubMed ID: 21573948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The photophysics of monomeric bacteriochlorophylls c and d and their derivatives: properties of the triplet state and singlet oxygen photogeneration and quenching.
    Krasnovsky AA; Cheng P; Blankenship RE; Moore TA; Gust D
    Photochem Photobiol; 1993; 57(2):324-30. PubMed ID: 11537867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.