These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10382113)

  • 1. Utilizing vehicle imbibition by a microporous membrane and vehicle viscosity to control release rate of salbutamol.
    Imanidis G; Imboden R
    Eur J Pharm Biopharm; 1999 May; 47(3):283-7. PubMed ID: 10382113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vehicle-dependent in situ modification of membrane-controlled drug release.
    Imanidis G; Helbing-Strausak S; Imboden R; Leuenberger H
    J Control Release; 1998 Jan; 51(1):23-34. PubMed ID: 9685901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the amphoteric properties of salbutamol on its release rate through a polypropylene control membrane.
    Imboden R; Imanidis G
    Eur J Pharm Biopharm; 1999 Mar; 47(2):161-7. PubMed ID: 10234541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of various microencapsulation techniques: effect of polymer viscosity on microcapsule characteristics.
    Murtaza G; Ahamd M; Akhtar N; Rasool F
    Pak J Pharm Sci; 2009 Jul; 22(3):291-300. PubMed ID: 19553177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transdermal delivery of ketorolac tromethamine: permeation enhancement, device design, and pharmacokinetics in healthy humans.
    Roy SD; Manoukian E
    J Pharm Sci; 1995 Oct; 84(10):1190-6. PubMed ID: 8801333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and in vitro dissolution of salbutamol sulphate microcapsules and tabletted microcapsules.
    Yazan Y; Demirel M; Güler E
    J Microencapsul; 1995; 12(6):601-7. PubMed ID: 8558382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of spray congealing and melt emulsification methods for the incorporation of the water-soluble salbutamol sulphate in lipid microparticles.
    Scalia S; Traini D; Young PM; Di Sabatino M; Passerini N; Albertini B
    Pharm Dev Technol; 2013 Feb; 18(1):266-73. PubMed ID: 22998063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro dissolution and in vivo gamma scintigraphic evaluation of press-coated salbutamol sulfate tablets.
    Li W; Shi CH; Sheng YL; Cui P; Zhao YQ; Zhang XR
    Acta Pharm; 2013 Dec; 63(4):545-51. PubMed ID: 24451078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iontophoretic and chemical enhancement of drug delivery. Part I: across artificial membranes.
    Nolan LM; Corish J; Corrigan OI; Fitzpatrick D
    Int J Pharm; 2003 May; 257(1-2):41-55. PubMed ID: 12711160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro delivery of doxycycline hydrochloride based on a porous membrane-based aqueous-organic partitioning system.
    Fan Q; Sirkar KK; Wang Y; Michniak B
    J Control Release; 2004 Aug; 98(3):355-65. PubMed ID: 15312992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suitability of Gelucire 50/13 for controlled release formulation of salbutamol sulphate.
    Mohsin S; Rahman NU; Idrees MA; Sarfraz MK; Khan MK; Mustafa G
    Pak J Pharm Sci; 2012 Jan; 25(1):35-41. PubMed ID: 22186307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro release of curcumin from vehicles containing alginate and cyclodextrin. Studies of curcumin and curcuminoides. XXXIII.
    Hegge AB; Schüller RB; Kristensen S; Tønnesen HH
    Pharmazie; 2008 Aug; 63(8):585-92. PubMed ID: 18771007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeation behavior of salbutamol sulfate through hydrophilic and hydrophobic membranes embedded by thermo-responsive cholesteryl oleyl carbonate.
    Lin SY; Lin YY; Chen KS
    Pharm Res; 1996 Jun; 13(6):914-9. PubMed ID: 8792432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol-acetone.
    Kaialy W; Ticehurst MD; Murphy J; Nokhodchi A
    J Pharm Sci; 2011 Jul; 100(7):2665-84. PubMed ID: 21268026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid lipid microparticles as a sustained release system for pulmonary drug delivery.
    Jaspart S; Bertholet P; Piel G; Dogné JM; Delattre L; Evrard B
    Eur J Pharm Biopharm; 2007 Jan; 65(1):47-56. PubMed ID: 16962749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ cross-linked matrix tablets for sustained salbutamol sulfate release - formulation development by statistical optimization.
    Malakar J; Das K; Nayak AK
    Polim Med; 2014; 44(4):221-30. PubMed ID: 25932903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers.
    Zeng XM; MacRitchie HB; Marriott C; Martin GP
    Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of additives on a thermosensitive hydrogel for buccal delivery of salbutamol: relation between micellization, gelation, mechanic and release properties.
    Zeng N; Dumortier G; Maury M; Mignet N; Boudy V
    Int J Pharm; 2014 Jun; 467(1-2):70-83. PubMed ID: 24699353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system for the production and delivery of monodisperse salbutamol aerosols to the lungs.
    Biddiscombe MF; Usmani OS; Barnes PJ
    Int J Pharm; 2003 Mar; 254(2):243-53. PubMed ID: 12623200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of iontophoretic and chemical enhancement on drug delivery. II. Transport across human and murine skin.
    Nolan LM; Corish J; Corrigan OI; Fitzpatrick D
    Int J Pharm; 2007 Aug; 341(1-2):114-24. PubMed ID: 17502130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.