BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 10383488)

  • 1. Creatine uptake in isolated soleus muscle: kinetics and dependence on sodium, but not on insulin.
    Willott CA; Young ME; Leighton B; Kemp GJ; Boehm EA; Radda GK; Clarke K
    Acta Physiol Scand; 1999 Jun; 166(2):99-104. PubMed ID: 10383488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion.
    Brault JJ; Abraham KA; Terjung RL
    J Appl Physiol (1985); 2003 Jun; 94(6):2173-80. PubMed ID: 12611762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain.
    O'Gorman E; Beutner G; Wallimann T; Brdiczka D
    Biochim Biophys Acta; 1996 Sep; 1276(2):161-70. PubMed ID: 8816948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ; Gissel H; Clausen T
    J Physiol; 2003 Mar; 547(Pt 2):567-80. PubMed ID: 12562912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine analogue beta-guanidinopropionic acid alters skeletal muscle AMP deaminase activity.
    Tullson PC; Rundell KW; Sabina RL; Terjung RL
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C76-85. PubMed ID: 8772432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic status and mitochondrial oxidative capacity of rat skeletal muscle in response to creatine analogue ingestion.
    Freyssenet D; Berthon P; Barthélémy JC; Busso T; Geyssant A; Denis C
    Biochim Biophys Acta; 1995 Mar; 1228(2-3):211-5. PubMed ID: 7893727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP synthesis kinetic properties of mitochondria isolated from the rat extensor digitorum longus muscle depleted of creatine with beta-guanidinopropionic acid.
    Freyssenet D; Berthon P; Geyssant A; Denis C
    Biochim Biophys Acta; 1994 Jul; 1186(3):232-6. PubMed ID: 8043594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-insulin and non-exercise related increase of glucose utilization in rats and mice.
    Ohira Y; Ishine S; Tabata I; Kurata H; Wakatsuki T; Sugawara S; Yasui W; Tanaka H; Kuroda Y
    Jpn J Physiol; 1994; 44(4):391-402. PubMed ID: 7869601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.
    Murphy KT; Nielsen OB; Clausen T
    Exp Physiol; 2008 Dec; 93(12):1249-62. PubMed ID: 18586859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creatine uptake and creatine transporter expression among rat skeletal muscle fiber types.
    Brault JJ; Terjung RL
    Am J Physiol Cell Physiol; 2003 Jun; 284(6):C1481-9. PubMed ID: 12570986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of diffusion distance on measurement of rat skeletal muscle glucose transport in vitro.
    Henriksen EJ; Holloszy JO
    Acta Physiol Scand; 1991 Dec; 143(4):381-6. PubMed ID: 1815474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Administration of a creatine analogue induces isomyosin transitions in muscle.
    Moerland TS; Wolf NG; Kushmerick MJ
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C810-6. PubMed ID: 2801930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review.
    Oudman I; Clark JF; Brewster LM
    PLoS One; 2013; 8(1):e52879. PubMed ID: 23326362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile properties of rat skeletal muscles after hindlimb unloading and beta-GPA administration.
    Nasledov GA; Arutyunyan RS; Nemirovskaya TL; Shenkman BS; Kozlovskaya IB
    J Gravit Physiol; 1996 Sep; 3(2):11-2. PubMed ID: 11540263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of creatine supplementation on mass and performance of rat skeletal muscle.
    Young RE; Young JC
    Life Sci; 2007 Aug; 81(9):710-6. PubMed ID: 17707068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic modulation of muscle fiber properties unrelated to mechanical stimuli.
    Ohira Y; Kawano F; Roy RR; Edgerton VR
    Jpn J Physiol; 2003 Dec; 53(6):389-400. PubMed ID: 15038837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-induced, but not creatine-induced, decrease in intramyocellular lipid content improves insulin sensitivity in rats.
    Vaisy M; Szlufcik K; De Bock K; Eijnde BO; Van Proeyen K; Verbeke K; Van Veldhoven P; Hespel P
    J Nutr Biochem; 2011 Dec; 22(12):1178-85. PubMed ID: 21333514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of platelet-activating factor on basal and insulin-mediated system A amino acid transport in rat soleus muscle.
    Boruff JS; Karlstad MD
    Circ Shock; 1993 May; 40(1):75-80. PubMed ID: 8324893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB; Clausen T
    Acta Physiol Scand; 1996 Jun; 157(2):199-209. PubMed ID: 8800360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of bumetanide-sensitive Na+ and K+ transport in rat skeletal muscle.
    Dørup I; Clausen T
    Acta Physiol Scand; 1996 Oct; 158(2):119-27. PubMed ID: 8899058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.