These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 10383860)
21. Mapping of the entomocidal fragment of Spodoptera-specific Bacillus thuringiensis toxin CryIC. Strizhov N; Keller M; Koncz-Kálmán Z; Regev A; Sneh B; Schell J; Koncz C; Zilberstein A Mol Gen Genet; 1996 Nov; 253(1-2):11-9. PubMed ID: 9003281 [TBL] [Abstract][Full Text] [Related]
22. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. Waterfield N; Kamita SG; Hammock BD; ffrench-Constant R FEMS Microbiol Lett; 2005 Apr; 245(1):47-52. PubMed ID: 15796978 [TBL] [Abstract][Full Text] [Related]
23. Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Waterfield N; Hares M; Yang G; Dowling A; ffrench-Constant R Cell Microbiol; 2005 Mar; 7(3):373-82. PubMed ID: 15679840 [TBL] [Abstract][Full Text] [Related]
24. Cloning and expression of the insecticidal crystal protein gene Cry1Ca9 of Bacillus thuringiensis G10-01A from Taiwan granaries. Kao SS; Hsieh FC; Tzeng CC; Tsai YS Curr Microbiol; 2003 Oct; 47(4):295-9. PubMed ID: 14629010 [TBL] [Abstract][Full Text] [Related]
25. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. Pardo-López L; Soberón M; Bravo A FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421 [TBL] [Abstract][Full Text] [Related]
27. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Rajamohan F; Lee MK; Dean DH Prog Nucleic Acid Res Mol Biol; 1998; 60():1-27. PubMed ID: 9594569 [TBL] [Abstract][Full Text] [Related]
28. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Brown SE; Cao AT; Dobson P; Hines ER; Akhurst RJ; East PD Appl Environ Microbiol; 2006 Feb; 72(2):1653-62. PubMed ID: 16461722 [TBL] [Abstract][Full Text] [Related]
29. Cloning and heterologous expression of insecticidal-protein-encoding genes from Photorhabdus luminescens TT01 in Enterobacter cloacae for termite control. Zhao R; Han R; Qiu X; Yan X; Cao L; Liu X Appl Environ Microbiol; 2008 Dec; 74(23):7219-26. PubMed ID: 18836027 [TBL] [Abstract][Full Text] [Related]
30. Screening a fosmid library of Xenorhabdus stockiae HN_xs01 reveals SrfABC toxin that exhibits both cytotoxicity and injectable insecticidal activity. Yang X; Hou X; Sun Y; Zhang G; Hu X; Xie Y; Mo X; Ding X; Xia L; Hu S J Invertebr Pathol; 2019 Oct; 167():107247. PubMed ID: 31521727 [TBL] [Abstract][Full Text] [Related]
31. Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal Tc toxin complexes. Bowen D; Blackburn M; Rocheleau T; Grutzmacher C; ffrench-Constant RH Insect Biochem Mol Biol; 2000 Jan; 30(1):69-74. PubMed ID: 10646972 [TBL] [Abstract][Full Text] [Related]
32. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. Hurst MR; Glare TR; Jackson TA; Ronson CW J Bacteriol; 2000 Sep; 182(18):5127-38. PubMed ID: 10960097 [TBL] [Abstract][Full Text] [Related]
33. Proteomic identification of a novel toxin protein (Txp40) from Xenorhabdus nematophila and its insecticidal activity against larvae of Plutella xylostella. Park JM; Kim M; Min J; Lee SM; Shin KS; Oh SD; Oh SJ; Kim YH J Agric Food Chem; 2012 Apr; 60(16):4053-9. PubMed ID: 22352834 [TBL] [Abstract][Full Text] [Related]
34. Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Sergeant M; Jarrett P; Ousley M; Morgan JA Appl Environ Microbiol; 2003 Jun; 69(6):3344-9. PubMed ID: 12788735 [TBL] [Abstract][Full Text] [Related]
35. Toxins and secretion systems of Photorhabdus luminescens. Rodou A; Ankrah DO; Stathopoulos C Toxins (Basel); 2010 Jun; 2(6):1250-64. PubMed ID: 22069636 [TBL] [Abstract][Full Text] [Related]
36. Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Liu D; Burton S; Glancy T; Li ZS; Hampton R; Meade T; Merlo DJ Nat Biotechnol; 2003 Oct; 21(10):1222-8. PubMed ID: 12949536 [TBL] [Abstract][Full Text] [Related]
37. Insecticidal Activity of Photorhabdus luminescens 0805-P2R Against Plutella xylostella. Wu LH; Wang YT; Hsieh FC; Hsieh C Appl Biochem Biotechnol; 2020 May; 191(1):191-200. PubMed ID: 32100234 [TBL] [Abstract][Full Text] [Related]
38. Molecular cloning and characterization of an insecticidal toxin from Pseudomonas taiwanensis. Liu JR; Lin YD; Chang ST; Zeng YF; Wang SL J Agric Food Chem; 2010 Dec; 58(23):12343-9. PubMed ID: 21062004 [TBL] [Abstract][Full Text] [Related]
39. Bacillus thuringiensis insecticidal Cry1Aa toxin binds to a highly conserved region of aminopeptidase N in the host insect leading to its evolutionary success. Nakanishi K; Yaoi K; Shimada N; Kadotani T; Sato R Biochim Biophys Acta; 1999 Jun; 1432(1):57-63. PubMed ID: 10366728 [TBL] [Abstract][Full Text] [Related]
40. Isolation and characterization of toxins from Xenorhabdus nematophilus against Ferrisia virgata (Ckll.) on tuberose, Polianthes tuberosa. Hemalatha D; Prabhu S; Rani WB; Anandham R Toxicon; 2018 May; 146():42-49. PubMed ID: 29596848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]