These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10383871)

  • 41. Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1.
    Kirkwood KM; Andersson JT; Fedorak PM; Foght JM; Gray MR
    Biodegradation; 2007 Oct; 18(5):541-9. PubMed ID: 17091342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ring cleavage of sulfur heterocycles: how does it happen?
    Bressler DC; Norman JA; Fedorak PM
    Biodegradation; 1997-1998; 8(5):297-311. PubMed ID: 15765609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture.
    Konishi M; Kishimoto M; Omasa T; Katakura Y; Shioya S; Ohtake H
    J Biosci Bioeng; 2005 Mar; 99(3):259-63. PubMed ID: 16233786
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103.
    Ishii Y; Kozaki S; Furuya T; Kino K; Kirimura K
    Curr Microbiol; 2005 Feb; 50(2):63-70. PubMed ID: 15702256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Comparison of the desulfurization activity among several bacteria and analysis of the conservation of their desulfurization genes].
    Xiong XC; Li WL; Li X; Xing JM; Liu HZ
    Wei Sheng Wu Xue Bao; 2005 Oct; 45(5):733-7. PubMed ID: 16342766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b.
    Gunam IB; Yaku Y; Hirano M; Yamamura K; Tomita F; Sone T; Asano K
    J Biosci Bioeng; 2006 Apr; 101(4):322-7. PubMed ID: 16716940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp.
    Li GQ; Li SS; Qu SW; Liu QK; Ma T; Zhu L; Liang FL; Liu RL
    Biotechnol Lett; 2008 Oct; 30(10):1759-64. PubMed ID: 18516503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Biological oxidation of a sulfur atom in single-carbon and organic compounds].
    Sorokin DIu
    Mikrobiologiia; 1993; 62(6):981-93. PubMed ID: 8114647
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate.
    Matsui T; Noda K; Tanaka Y; Maruhashi K; Kurane R
    Curr Microbiol; 2002 Oct; 45(4):240-4. PubMed ID: 12192519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of biodesulfurization by Pseudomonas delafieldii in a ceramic microsparging aeration system.
    Lin X; Liu H; Zhu F; Wei X; Li Q; Luo M
    Biotechnol Lett; 2012 Jun; 34(6):1029-32. PubMed ID: 22395479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extensive desulfurization of diesel by Rhodococcus erythropolis.
    Zhang Q; Tong MY; Li YS; Gao HJ; Fang XC
    Biotechnol Lett; 2007 Jan; 29(1):123-7. PubMed ID: 17091384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. De-repression and comparison of oil-water separation activity of the dibenzothiophene desulfurizing bacterium, Mycobacterium sp. G3.
    Takada M; Nomura N; Okada H; Nakajima-Kambe T; Nakahara T; Uchiyama H
    Biotechnol Lett; 2005 Jun; 27(12):871-4. PubMed ID: 16086250
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced dibenzothiophene biodesulfurization in a microchannel reactor.
    Noda K; Kogure T; Irisa S; Murakami Y; Sakata M; Kuroda A
    Biotechnol Lett; 2008 Mar; 30(3):451-4. PubMed ID: 17957341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants.
    Arensdorf JJ; Loomis AK; DiGrazia PM; Monticello DJ; Pienkos PT
    Appl Environ Microbiol; 2002 Feb; 68(2):691-8. PubMed ID: 11823208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial biocatalyst developments to upgrade fossil fuels.
    Kilbane JJ
    Curr Opin Biotechnol; 2006 Jun; 17(3):305-14. PubMed ID: 16678400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic response against sulfur-containing heterocyclic compounds by the lignin-degrading basidiomycete Coriolus versicolor.
    Ichinose H; Nakamizo M; Wariishi H; Tanaka H
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):517-26. PubMed ID: 11954800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodesulfurization of dibenzothiophene and gas oil using a bioreactor containing a catalytic bed with Rhodococcus rhodochrous immobilized on silica.
    Alejandro Dinamarca M; Orellana L; Aguirre J; Baeza P; Espinoza G; Canales C; Ojeda J
    Biotechnol Lett; 2014 Aug; 36(8):1649-52. PubMed ID: 24748430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biodegradation potential of the genus Rhodococcus.
    Martínková L; Uhnáková B; Pátek M; Nesvera J; Kren V
    Environ Int; 2009 Jan; 35(1):162-77. PubMed ID: 18789530
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The remarkable Rhodococcus erythropolis.
    de Carvalho CC; da Fonseca MM
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):715-26. PubMed ID: 15711940
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp.
    Ma CQ; Feng JH; Zeng YY; Cai XF; Sun BP; Zhang ZB; Blankespoor HD; Xu P
    Chemosphere; 2006 Sep; 65(1):165-9. PubMed ID: 16624377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.