These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 10383977)
1. Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. Ide T; Bäumer S; Deppenmeier U J Bacteriol; 1999 Jul; 181(13):4076-80. PubMed ID: 10383977 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Gö1 by diphenyleneiodonium. Brodersen J; Bäumer S; Abken HJ; Gottschalk G; Deppenmeier U Eur J Biochem; 1999 Jan; 259(1-2):218-24. PubMed ID: 9914496 [TBL] [Abstract][Full Text] [Related]
3. The F420H2:heterodisulfide oxidoreductase system from Methanosarcina species. 2-Hydroxyphenazine mediates electron transfer from F420H2 dehydrogenase to heterodisulfide reductase. Bäumer S; Murakami E; Brodersen J; Gottschalk G; Ragsdale SW; Deppenmeier U FEBS Lett; 1998 May; 428(3):295-8. PubMed ID: 9654152 [TBL] [Abstract][Full Text] [Related]
4. The F420H2 dehydrogenase from Methanosarcina mazei is a Redox-driven proton pump closely related to NADH dehydrogenases. Baumer S; Ide T; Jacobi C; Johann A; Gottschalk G; Deppenmeier U J Biol Chem; 2000 Jun; 275(24):17968-73. PubMed ID: 10751389 [TBL] [Abstract][Full Text] [Related]
5. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. Becher B; Müller V J Bacteriol; 1994 May; 176(9):2543-50. PubMed ID: 8169202 [TBL] [Abstract][Full Text] [Related]
6. Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. Welte C; Krätzer C; Deppenmeier U FEBS J; 2010 Aug; 277(16):3396-403. PubMed ID: 20629748 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a CO: heterodisulfide oxidoreductase system from acetate-grown Methanosarcina thermophila. Peer CW; Painter MH; Rasche ME; Ferry JG J Bacteriol; 1994 Nov; 176(22):6974-9. PubMed ID: 7961460 [TBL] [Abstract][Full Text] [Related]
8. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria. Deppenmeier U; Blaut M; Mahlmann A; Gottschalk G Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9449-53. PubMed ID: 11607121 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. Abken HJ; Tietze M; Brodersen J; Bäumer S; Beifuss U; Deppenmeier U J Bacteriol; 1998 Apr; 180(8):2027-32. PubMed ID: 9555882 [TBL] [Abstract][Full Text] [Related]
10. Proton translocation in methanogens. Welte C; Deppenmeier U Methods Enzymol; 2011; 494():257-80. PubMed ID: 21402219 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the intramolecular electron transfer pathway from 2-hydroxyphenazine to the heterodisulfide reductase from Methanosarcina thermophila. Murakami E; Deppenmeier U; Ragsdale SW J Biol Chem; 2001 Jan; 276(4):2432-9. PubMed ID: 11034998 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. Kröninger L; Berger S; Welte C; Deppenmeier U FEBS J; 2016 Feb; 283(3):472-83. PubMed ID: 26573766 [TBL] [Abstract][Full Text] [Related]
13. Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Heiden S; Hedderich R; Setzke E; Thauer RK Eur J Biochem; 1993 Apr; 213(1):529-35. PubMed ID: 8477725 [TBL] [Abstract][Full Text] [Related]
14. Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane-bound ferredoxin oxidation coupled to heterodisulfide reduction. Kröninger L; Steiniger F; Berger S; Kraus S; Welte CU; Deppenmeier U FEBS J; 2019 Oct; 286(19):3831-3843. PubMed ID: 31162794 [TBL] [Abstract][Full Text] [Related]
15. Re-evaluation of the function of the F420 dehydrogenase in electron transport of Methanosarcina mazei. Welte C; Deppenmeier U FEBS J; 2011 Apr; 278(8):1277-87. PubMed ID: 21306561 [TBL] [Abstract][Full Text] [Related]
16. Process of energy conservation in the extremely haloalkaliphilic methyl-reducing methanogen Methanonatronarchaeum thermophilum. Steiniger F; Sorokin DY; Deppenmeier U FEBS J; 2022 Jan; 289(2):549-563. PubMed ID: 34435454 [TBL] [Abstract][Full Text] [Related]
17. The coupling ion in the methanoarchaeal ATP synthases: H(+) vs. Na(+) in the A(1)A(o) ATP synthase from the archaeon Methanosarcina mazei Gö1. Pisa KY; Weidner C; Maischak H; Kavermann H; Müller V FEMS Microbiol Lett; 2007 Dec; 277(1):56-63. PubMed ID: 17986085 [TBL] [Abstract][Full Text] [Related]
18. Novel reactions involved in energy conservation by methanogenic archaea. Deppenmeier U; Lienard T; Gottschalk G FEBS Lett; 1999 Sep; 457(3):291-7. PubMed ID: 10471795 [TBL] [Abstract][Full Text] [Related]
19. Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. Schlegel K; Welte C; Deppenmeier U; Müller V FEBS J; 2012 Dec; 279(24):4444-52. PubMed ID: 23066798 [TBL] [Abstract][Full Text] [Related]
20. The a subunit of the A1AO ATP synthase of Methanosarcina mazei Gö1 contains two conserved arginine residues that are crucial for ATP synthesis. Gloger C; Born AK; Antosch M; Müller V Biochim Biophys Acta; 2015; 1847(6-7):505-13. PubMed ID: 25724672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]