BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10383982)

  • 21. Isolation, free-living capacities, and genome structure of "Candidatus Glomeribacter gigasporarum," the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita.
    Jargeat P; Cosseau C; Ola'h B; Jauneau A; Bonfante P; Batut J; Bécard G
    J Bacteriol; 2004 Oct; 186(20):6876-84. PubMed ID: 15466041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium.
    Venice F; Chialva M; Domingo G; Novero M; Carpentieri A; Salvioli di Fossalunga A; Ghignone S; Amoresano A; Vannini C; Lanfranco L; Bonfante P
    Plant J; 2021 Dec; 108(6):1547-1564. PubMed ID: 34767660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association.
    Torres-Cortés G; Ghignone S; Bonfante P; Schüßler A
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7785-90. PubMed ID: 25964335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita.
    Moscatiello R; Sello S; Novero M; Negro A; Bonfante P; Navazio L
    New Phytol; 2014 Aug; 203(3):1012-20. PubMed ID: 24845011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi.
    Mori N; Nishiuma K; Sugiyama T; Hayashi H; Akiyama K
    Phytochemistry; 2016 Oct; 130():90-8. PubMed ID: 27264641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arbuscular mycorrhizal fungi promote the growth of Dipteryx alata Vogel.
    Souza GG; Santos SC; Santos CC; Dias AS; Silverio JM; Trovato VW; Flauzino DS
    Braz J Biol; 2023; 83():e275172. PubMed ID: 37909590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita.
    Kojima T; Saito M
    Mycol Res; 2004 Jun; 108(Pt 6):610-5. PubMed ID: 15323242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Symbiotic phosphate transport in arbuscular mycorrhizas.
    Karandashov V; Bucher M
    Trends Plant Sci; 2005 Jan; 10(1):22-9. PubMed ID: 15642520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach.
    Grønlund M; Albrechtsen M; Johansen IE; Hammer EC; Nielsen TH; Jakobsen I
    Physiol Plant; 2013 Oct; 149(2):234-48. PubMed ID: 23387980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A molecular marker diagnostic of a specific isolate of an arbuscular mycorrhizal fungus, Gigaspora margarita.
    Yokoyama K; Tateishi T; Marumoto T; Saito M
    FEMS Microbiol Lett; 2002 Jul; 212(2):171-5. PubMed ID: 12113930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.
    Calvo-Polanco M; Molina S; Zamarreño AM; García-Mina JM; Aroca R
    Plant Cell Physiol; 2014 May; 55(5):1017-29. PubMed ID: 24553847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of an endofungal lifestyle: Deductions from the Burkholderia rhizoxinica genome.
    Lackner G; Moebius N; Partida-Martinez LP; Boland S; Hertweck C
    BMC Genomics; 2011 May; 12():210. PubMed ID: 21539752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).
    Tian H; Drijber RA; Li X; Miller DN; Wienhold BJ
    Mycorrhiza; 2013 Aug; 23(6):507-14. PubMed ID: 23467773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus.
    Ohtomo R; Saito M
    New Phytol; 2005 Aug; 167(2):571-8. PubMed ID: 15998407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.
    Harrison MJ; van Buuren ML
    Nature; 1995 Dec; 378(6557):626-9. PubMed ID: 8524398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmembrane electric potential difference of germ tubes of arbuscular mycorrhizal fungi responds to external stimuli.
    Ayling SM; Smith SE; Smith FA
    New Phytol; 2000 Sep; 147(3):631-639. PubMed ID: 33862934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant.
    Pivato B; Offre P; Marchelli S; Barbonaglia B; Mougel C; Lemanceau P; Berta G
    Mycorrhiza; 2009 Feb; 19(2):81-90. PubMed ID: 18941805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray microanalysis of elements of VA mycorrhizal and non-mycorrhizal Pennisetum pedicellatum roots.
    Ramesh C; Chellappan P; Mahadevan A
    Indian J Exp Biol; 2000 Apr; 38(4):396-8. PubMed ID: 11218820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts.
    Lanfranco L; Novero M; Bonfante P
    Plant Physiol; 2005 Apr; 137(4):1319-30. PubMed ID: 15749992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of protein profiles and enzymes in non-mycorrhizal and mycorrhizal roots of Pennisetum pedicellatum.
    Ramesh C; Chellappan P; Mahadevan A
    Indian J Exp Biol; 2000 May; 38(5):483-7. PubMed ID: 11272414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.