These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10383984)

  • 21. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis.
    Jiang M; Shao W; Perego M; Hoch JA
    Mol Microbiol; 2000 Nov; 38(3):535-42. PubMed ID: 11069677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ScoC regulates bacilysin production at the transcription level in Bacillus subtilis.
    Inaoka T; Wang G; Ochi K
    J Bacteriol; 2009 Dec; 191(23):7367-71. PubMed ID: 19801406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The MarR-like protein PchR (YvmB) regulates expression of genes involved in pulcherriminic acid biosynthesis and in the initiation of sporulation in Bacillus subtilis.
    Randazzo P; Aubert-Frambourg A; Guillot A; Auger S
    BMC Microbiol; 2016 Aug; 16(1):190. PubMed ID: 27542896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of the pleiotropic gene scoC causes transcriptomic and phenotypical changes in Bacillus pumilus BA06.
    Han LL; Liu YC; Miao CC; Feng H
    BMC Genomics; 2019 Apr; 20(1):327. PubMed ID: 31039790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of OpcR, a GbsR-type transcriptional regulator, in negative regulation of two evolutionarily closely related choline uptake genes in Bacillus subtilis.
    Lee CH; Wu TY; Shaw GC
    Microbiology (Reading); 2013 Oct; 159(Pt 10):2087-2096. PubMed ID: 23960087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ClpC regulates the fate of a sporulation initiation sigma factor, sigmaH protein, in Bacillus subtilis at elevated temperatures.
    Nanamiya H; Ohashi Y; Asai K; Moriya S; Ogasawara N; Fujita M; Sadaie Y; Kawamura F
    Mol Microbiol; 1998 Jul; 29(2):505-13. PubMed ID: 9720868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two distinct regulatory systems control pulcherrimin biosynthesis in Bacillus subtilis.
    Fernandez NL; Simmons LA
    PLoS Genet; 2024 May; 20(5):e1011283. PubMed ID: 38753885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintaining the transcription factor SpoIIID level late during sporulation causes spore defects in Bacillus subtilis.
    Wang L; Perpich J; Driks A; Kroos L
    J Bacteriol; 2007 Oct; 189(20):7302-9. PubMed ID: 17693499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis.
    Ogura M; Shimane K; Asai K; Ogasawara N; Tanaka T
    Mol Microbiol; 2003 Sep; 49(6):1685-97. PubMed ID: 12950930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis.
    Gaballa A; Helmann JD
    J Bacteriol; 1998 Nov; 180(22):5815-21. PubMed ID: 9811636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis.
    Vidwans SJ; Ireton K; Grossman AD
    J Bacteriol; 1995 Jun; 177(11):3308-11. PubMed ID: 7768831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular analysis of an operon in Bacillus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence.
    Leskelä S; Kontinen VP; Sarvas M
    Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():71-77. PubMed ID: 8581172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A dual mode of regulation of flgM by ScoC in Bacillus subtilis.
    Kodgire P; Rao KK
    Can J Microbiol; 2009 Aug; 55(8):983-9. PubMed ID: 19898538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis.
    Boguslawski KM; Hill PA; Griffith KL
    Mol Microbiol; 2015 Apr; 96(2):325-48. PubMed ID: 25598361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Bacillus subtilis NatK-NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion.
    Ogura M; Tsukahara K; Hayashi K; Tanaka T
    Microbiology (Reading); 2007 Mar; 153(Pt 3):667-675. PubMed ID: 17322186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. hag expression in Bacillus subtilis is both negatively and positively regulated by ScoC.
    Kodgire P; Rao KK
    Microbiology (Reading); 2009 Jan; 155(Pt 1):142-149. PubMed ID: 19118355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spo0A positively regulates epr expression by negating the repressive effect of co-repressors, SinR and ScoC, in Bacillus subtilis.
    Gupta M; Dixit M; Rao KK
    J Biosci; 2013 Jun; 38(2):291-9. PubMed ID: 23660663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of Bacillus subtilis gene expression during the transition from exponential growth to stationary phase.
    Strauch MA
    Prog Nucleic Acid Res Mol Biol; 1993; 46():121-53. PubMed ID: 8234782
    [No Abstract]   [Full Text] [Related]  

  • 40. Control of initiation of sporulation by replication initiation genes in Bacillus subtilis.
    Lemon KP; Kurtser I; Wu J; Grossman AD
    J Bacteriol; 2000 May; 182(10):2989-91. PubMed ID: 10781575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.