BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10384048)

  • 41. Co-amplification of L1 line elements with localised low copy repeats in Giemsa dark bands: implications for genome organisation.
    Nasir J; Maconochie MK; Brown SD
    Nucleic Acids Res; 1991 Jun; 19(12):3255-60. PubMed ID: 2062641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man.
    Kazazian HH; Wong C; Youssoufian H; Scott AF; Phillips DG; Antonarakis SE
    Nature; 1988 Mar; 332(6160):164-6. PubMed ID: 2831458
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1).
    Kolosha VO; Martin SL
    J Biol Chem; 2003 Mar; 278(10):8112-7. PubMed ID: 12506113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one.
    Burton FH; Loeb DD; Voliva CF; Martin SL; Edgell MH; Hutchison CA
    J Mol Biol; 1986 Jan; 187(2):291-304. PubMed ID: 3009828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LINE-1 preTa elements in the human genome.
    Salem AH; Myers JS; Otieno AC; Watkins WS; Jorde LB; Batzer MA
    J Mol Biol; 2003 Feb; 326(4):1127-46. PubMed ID: 12589758
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization.
    Noma K; Ohtsubo H; Ohtsubo E
    DNA Res; 2000 Oct; 7(5):291-303. PubMed ID: 11089911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic alterations upon integration of zebrafish L1 elements revealed by the TANT method.
    Ichiyanagi K; Okada N
    Gene; 2006 Nov; 383():108-16. PubMed ID: 17049188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular and physical characterization of the complex pericentromeric heterochromatin of the vole species Microtus thomasi.
    Rovatsos MT; Marchal JA; Romero-Fernández I; Cano-Linares M; Fernández FJ; Giagia-Athanasopoulou EB; Sánchez A
    Cytogenet Genome Res; 2014; 144(2):131-41. PubMed ID: 25402553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new pericentromeric repeated DNA sequence in Microtus thomasi.
    Acosta MJ; Marchal JA; Mitsainas GP; Rovatsos MT; Fernández-Espartero CH; Giagia-Athanasopoulou EB; Sánchez A
    Cytogenet Genome Res; 2009; 124(1):27-36. PubMed ID: 19372666
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences.
    Triant DA; Dewoody JA
    Genetica; 2006; 128(1-3):95-108. PubMed ID: 17028943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular and cytogenetic characterization of highly repeated DNA sequences in the vole Microtus cabrerae.
    Fernández R; Barragán MJ; Bullejos M; Marchal JA; Martínez S; Díaz de la Guardia R; Sánchez A
    Heredity (Edinb); 2001 Dec; 87(Pt 6):637-46. PubMed ID: 11903559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An abundant LINE-like element amplified in the genome of Lilium speciosum.
    Leeton PR; Smyth DR
    Mol Gen Genet; 1993 Feb; 237(1-2):97-104. PubMed ID: 7681139
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of the gonosomal heterochromatin of Microtus agrestis: rapid amplification of a large, multimeric, repeat unit containing a 3.0-kb (GATA)11-positive, middle repetitive element.
    Kalscheuer V; Singh AP; Nanda I; Sperling K; Neitzel H
    Cytogenet Cell Genet; 1996; 73(3):171-8. PubMed ID: 8697802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Characteristics of short repeating sequences of DNA from the MSAT-160 family in the Microtus arvalis vole (Rodentia, Cricetidae)].
    Shevchenko AI; Slobodianiuk SIa; Zakiian SM
    Mol Biol (Mosk); 1998; 32(4):603-8. PubMed ID: 9785562
    [No Abstract]   [Full Text] [Related]  

  • 55. On two transposable elements from Bacillus stearothermophilus.
    Xu K; He ZQ; Mao YM; Sheng RQ; Sheng ZJ
    Plasmid; 1993 Jan; 29(1):1-9. PubMed ID: 8382825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular characterization of a STreptococcus mutans mutant altered in environmental stress responses.
    Yamashita Y; Takehara T; Kuramitsu HK
    J Bacteriol; 1993 Oct; 175(19):6220-8. PubMed ID: 8407794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanog gene: genomic organization and expression in the vole Microtus rossiaemeridionalis.
    Medvedev SP; Elisaphenko EA; Shevchenko AI; Mazurok NA; Zakian SM
    Dokl Biochem Biophys; 2009; 425():102-5. PubMed ID: 19496333
    [No Abstract]   [Full Text] [Related]  

  • 58. A full-length and potentially active LINE element is integrated polymorphically within the IGL locus in a genomically unstable region of chromosome 22.
    Benjes SM; Morris CM
    Hum Genet; 2001 Dec; 109(6):628-37. PubMed ID: 11810275
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequence homology and absence of mRNA defines a possible pseudogene member of the Trypanosoma cruzi gp85/sialidase multigene family.
    Takle GB; O'Connor J; Young AJ; Cross GA
    Mol Biochem Parasitol; 1992 Nov; 56(1):117-27. PubMed ID: 1474990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The complete mitochondrial genome of Microtus fortis calamorum (Arvicolinae, Rodentia) and its phylogenetic analysis.
    Jiang X; Gao J; Ni L; Hu J; Li K; Sun F; Xie J; Bo X; Gao C; Xiao J; Zhou Y
    Gene; 2012 May; 498(2):288-95. PubMed ID: 22387301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.