These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10384950)

  • 1. Modelling radiation-induced biological lesions: from initial energy depositions to chromosome aberrations.
    Ottolenghi A; Ballarini F; Merzagora M
    Radiat Environ Biophys; 1999 May; 38(1):1-13. PubMed ID: 10384950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome aberrations produced by ionizing radiation: Monte Carlo simulations and chromosome painting data.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Comput Appl Biosci; 1995 Aug; 11(4):389-97. PubMed ID: 8521048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome aberrations as biomarkers of radiation exposure: modelling basic mechanisms.
    Ballarini F; Ottolenghi A
    Adv Space Res; 2003; 31(6):1557-68. PubMed ID: 12971411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear architecture and radiation induced chromosome aberrations: models and simulations.
    Ballarini F; Biaggi M; Ottolenghi A
    Radiat Prot Dosimetry; 2002; 99(1-4):175-82. PubMed ID: 12194278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the formation of chromosome aberrations in X-irradiated human lymphocytes, using PCC and FISH.
    Darroudi F; Fomina J; Meijers M; Natarajan AT
    Mutat Res; 1998 Aug; 404(1-2):55-65. PubMed ID: 9729276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome aberrations induced by light ions: Monte Carlo simulations based on a mechanistic model.
    Ballarini F; Merzagora M; Monforti F; Durante M; Gialanella G; Grossi GF; Pugliese M; Ottolenghi A
    Int J Radiat Biol; 1999 Jan; 75(1):35-46. PubMed ID: 9972789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rejoining and misrejoining of radiation-induced chromatin breaks. I. experiments with human lymphocytes.
    Durante M; George K; Wu H; Yang TC
    Radiat Res; 1996 Mar; 145(3):274-80. PubMed ID: 8927694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling chromosomal aberration induction by ionising radiation: the influence of interphase chromosome architecture.
    Ottolenghi A; Ballarini F; Biaggi M
    Adv Space Res; 2001; 27(2):369-82. PubMed ID: 11642299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rejoining and misrejoining of radiation-induced chromatin breaks. IV. Charged particles.
    Durante M; Furusawa Y; George K; Gialanella G; Greco O; Grossi G; Matsufuji N; Pugliese M; Yang TC
    Radiat Res; 1998 May; 149(5):446-54. PubMed ID: 9588355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of chromosome aberration induction: applications to space research.
    Ballarini F; Ottolenghi A
    Radiat Res; 2005 Oct; 164(4 Pt 2):567-70. PubMed ID: 16187789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells.
    Foster HA; Estrada-Girona G; Themis M; Garimberti E; Hill MA; Bridger JM; Anderson RM
    Mutat Res; 2013 Aug; 756(1-2):66-77. PubMed ID: 23791770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetics of postirradiation chromatin restitution as revealed by chromosome aberrations detected by premature chromosome condensation and fluorescence in situ hybridization.
    Greinert R; Detzler E; Harder D
    Radiat Res; 2000 Jul; 154(1):87-93. PubMed ID: 10856969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of radiation quality on the spectrum of induced chromosome exchange aberrations.
    Boei JJ; Vermeulen S; Mullenders LH; Natarajan AT
    Int J Radiat Biol; 2001 Aug; 77(8):847-57. PubMed ID: 11571018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Rejoining pathways underlying intrachange formation depend on interphase chromosome structure].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 2001; 41(5):469-74. PubMed ID: 11721341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2018 Apr; 64():45-52. PubMed ID: 29494834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random breakage and reunion chromosome aberration formation model; an interaction-distance version based on chromatin geometry.
    Sachs RK; Levy D; Chen AM; Simpson PJ; Cornforth MN; Ingerman EA; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Dec; 76(12):1579-88. PubMed ID: 11133039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of formation of exchanges and rejoining of breaks in human G0 and G2 lymphocytes after low-LET radiation.
    Sipi P; Lindholm C; Salomaa S
    Int J Radiat Biol; 2000 Jun; 76(6):823-30. PubMed ID: 10902737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of chromosome exchange formation in human fibroblasts: insights from "chromosome painting".
    Brown JM; Evans JW; Kovacs MS
    Environ Mol Mutagen; 1993; 22(4):218-24. PubMed ID: 8223502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of data on chromosome aberrations produced by X rays or alpha particles and detected by fluorescence in situ hybridization.
    Chen AM; Lucas JN; Simpson PJ; Griffin CS; Savage JR; Brenner DJ; Hlatky LR; Sachs RK
    Radiat Res; 1997 Nov; 148(5 Suppl):S93-101. PubMed ID: 9355862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.