BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 10385711)

  • 41. Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas.
    Russo D; Arturi F; Suarez HG; Schlumberger M; Du Villard JA; Crocetti U; Filetti S
    J Clin Endocrinol Metab; 1996 Apr; 81(4):1548-51. PubMed ID: 8636365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lack of in vitro constitutive activity for four previously reported TSH receptor mutations identified in patients with nonautoimmune hyperthyroidism and hot thyroid carcinomas.
    Jaeschke H; Mueller S; Eszlinger M; Paschke R
    Clin Endocrinol (Oxf); 2010 Dec; 73(6):815-20. PubMed ID: 20846293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TSH-activated signaling pathways in thyroid tumorigenesis.
    Rivas M; Santisteban P
    Mol Cell Endocrinol; 2003 Dec; 213(1):31-45. PubMed ID: 15062572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The thyrotropin receptor in thyroid diseases.
    Paschke R; Ludgate M
    N Engl J Med; 1997 Dec; 337(23):1675-81. PubMed ID: 9385128
    [No Abstract]   [Full Text] [Related]  

  • 45. Contrasting effects of activating mutations of GalphaS and the thyrotropin receptor on proliferation and differentiation of thyroid follicular cells.
    Ludgate M; Gire V; Crisp M; Ajjan R; Weetman A; Ivan M; Wynford-Thomas D
    Oncogene; 1999 Aug; 18(34):4798-807. PubMed ID: 10490813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. G protein and thyrotropin receptor mutations in thyroid neoplasia.
    Esapa C; Foster S; Johnson S; Jameson JL; Kendall-Taylor P; Harris PE
    J Clin Endocrinol Metab; 1997 Feb; 82(2):493-6. PubMed ID: 9024242
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cysteine 390 mutation of the TSH receptor modulates its ectodomain as an inverse agonist on the serpentine domain with decrease in basal constitutive activity.
    Ho SC; Goh SS; Su Q; Khoo DH
    Mol Cell Endocrinol; 2005 Dec; 245(1-2):158-68. PubMed ID: 16364538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Point mutations of the thyrotropin receptor gene in autonomously functioning thyroid gland nodules: correlation with clinical findings and morphology].
    Lax SF; Semlitsch G; Schauer S; Zatloukal K; Langsteger W; Eber O; Höfler G
    Verh Dtsch Ges Pathol; 1997; 81():145-50. PubMed ID: 9474865
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [TSH receptors in autonomous thyroid adenoma].
    Mueller-Gaertner HW
    Acta Med Austriaca; 1990; 17 Suppl 1():12-5. PubMed ID: 2202176
    [No Abstract]   [Full Text] [Related]  

  • 50. Primary culture of cells from hyperfunctioning thyroid adenoma with an activating mutation of G alphas.
    Kamiya Y; Murakami M; Yanagita Y; Koitabashi H; Nagamachi Y; Hosoi Y; Ogiwara T; Mizuma H; Iriuchijima T; Mori M
    Mol Cell Endocrinol; 1998 Mar; 138(1-2):137-42. PubMed ID: 9685222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Congenital hyperthyroidism caused by a solitary toxic adenoma harboring a novel somatic mutation (serine281-->isoleucine) in the extracellular domain of the thyrotropin receptor.
    Kopp P; Muirhead S; Jourdain N; Gu WX; Jameson JL; Rodd C
    J Clin Invest; 1997 Sep; 100(6):1634-9. PubMed ID: 9294132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TSH receptor and Gs-alpha gene mutations in the pathogenesis of toxic thyroid adenomas--a note of caution.
    Derwahl M
    J Clin Endocrinol Metab; 1996 Aug; 81(8):2783-5. PubMed ID: 8768829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gs alpha mutations in hyperfunctioning thyroid adenomas.
    Murakami M; Kamiya Y; Yanagita Y; Mori M
    Arch Med Res; 1999; 30(6):514-21. PubMed ID: 10714366
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New pathophysiological mechanisms for hyperthyroidism.
    Vassart G
    Horm Res; 1997; 48 Suppl 4():47-50. PubMed ID: 9350447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The 3',5'-cyclic adenosine monophosphate response element binding protein (CREB) is functionally reduced in human toxic thyroid adenomas.
    Brunetti A; Chiefari E; Filetti S; Russo D
    Endocrinology; 2000 Feb; 141(2):722-30. PubMed ID: 10650954
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular pathogenesis of thyroid nodules and cancer.
    Moretti F; Nanni S; Pontecorvi A
    Baillieres Best Pract Res Clin Endocrinol Metab; 2000 Dec; 14(4):517-39. PubMed ID: 11289733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological activity of activating thyrotrophin receptor mutants: modulation by iodide.
    Al-Khafaji F; Wiltshire M; Fuhrer D; Mazziotti G; Lewis MD; Smith PJ; Ludgate M
    J Mol Endocrinol; 2005 Feb; 34(1):209-20. PubMed ID: 15691889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TSH induces co-localization of TSH receptor and Na/K-ATPase in human erythrocytes.
    Balzan S; Del Carratore R; Nicolini G; Forini F; Lubrano V; Simili M; Benedetti PA; Iervasi G
    Cell Biochem Funct; 2009 Jul; 27(5):259-63. PubMed ID: 19466745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Search for NTRK1 proto-oncogene rearrangements in human thyroid tumours originated after therapeutic radiation.
    Bounacer A; Schlumberger M; Wicker R; Du-Villard JA; Caillou B; Sarasin A; Suárez HG
    Br J Cancer; 2000 Jan; 82(2):308-14. PubMed ID: 10646882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular biology of thyroid neoplasms.
    Satta MA; Nanni S; Della Casa S; Pontecorvi A
    Rays; 2000; 25(2):151-61. PubMed ID: 11370534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.