These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10386359)

  • 1. Exposures from thorium contained in thoriated tungsten welding electrodes.
    Jankovic JT; Underwood WS; Goodwin GM
    Am Ind Hyg Assoc J; 1999; 60(3):384-9. PubMed ID: 10386359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of air concentrations of thorium during grinding and welding operations using thoriated tungsten electrodes.
    Crim EM; Bradley TD
    Health Phys; 1995 May; 68(5):719-22. PubMed ID: 7730071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes.
    Gäfvert T; Pagels J; Holm E
    Radiat Prot Dosimetry; 2003; 103(4):349-57. PubMed ID: 12797558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thorium-232 exposure during tungsten inert gas arc welding and electrode sharpening.
    Saito H; Hisanaga N; Okada Y; Hirai S; Arito H
    Ind Health; 2003 Jul; 41(3):273-8. PubMed ID: 12916759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intakes of thorium while using thoriated tungsten electrodes for TIG welding.
    Ludwig T; Schwass D; Seitz G; Siekmann H
    Health Phys; 1999 Oct; 77(4):462-9. PubMed ID: 10492354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Thorium: analysis and dosimetry of thorium welding electrodes].
    Laroche P; Cazoulat A; Rotger C; Petitot F; Gérasimo P
    Ann Pharm Fr; 1998; 56(3):123-33. PubMed ID: 9770019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-fractionated thorium isotopes (228Th, 230Th, 232Th) in surface waters in the Jiulong River estuary, China.
    Zhang L; Chen M; Yang W; Xing N; Li Y; Qiu Y; Huang Y
    J Environ Radioact; 2005; 78(2):199-216. PubMed ID: 15511559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of thoriated tungsten electrodes in inert gas shielded arc welding; investigation of potential hazard.
    BRESLIN AJ; HARRIS WB
    Am Ind Hyg Assoc Q; 1952 Dec; 13(4):191-5. PubMed ID: 13007665
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.
    Graczyk H; Lewinski N; Zhao J; Concha-Lozano N; Riediker M
    Ann Occup Hyg; 2016 Mar; 60(2):205-19. PubMed ID: 26464505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of thorium exposure during tungsten inert gas welding in an airline engineering population.
    McElearney N; Irvine D
    J Occup Med; 1993 Jul; 35(7):707-11. PubMed ID: 8396174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese exposures during shielded metal arc welding (SMAW) in an enclosed space.
    Harris MK; Ewing WM; Longo W; DePasquale C; Mount MD; Hatfield R; Stapleton R
    J Occup Environ Hyg; 2005 Aug; 2(8):375-82. PubMed ID: 16080259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel.
    Miettinen M; Torvela T; Leskinen JT
    Ann Occup Hyg; 2016 Oct; 60(8):960-8. PubMed ID: 27390355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and chemical characterization of airborne particles from welding operations in automotive plants.
    Dasch J; D'Arcy J
    J Occup Environ Hyg; 2008 Jul; 5(7):444-54. PubMed ID: 18464098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-zone model application to breathing zone and area welding fume concentration data.
    Boelter FW; Simmons CE; Berman L; Scheff P
    J Occup Environ Hyg; 2009 May; 6(5):298-306. PubMed ID: 19266377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone.
    Lidén G; Surakka J
    Ann Occup Hyg; 2009 Mar; 53(2):99-116. PubMed ID: 19196747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of direct alpha spectrometry and neutron activation analysis of aerosol filters for determination of workplace thorium air concentrations.
    Hötzl H; Riedmann W; Weinmüller K; Winkler R
    Health Phys; 1996 May; 70(5):651-5. PubMed ID: 8690575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type.
    Keane M; Stone S; Chen B; Slaven J; Schwegler-Berry D; Antonini J
    J Environ Monit; 2009 Feb; 11(2):418-24. PubMed ID: 19212602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occupational radiation exposure due to norm in a rare-earth compounds production facility.
    Haridasan PP; Pillai PM; Tripathi RM; Puranik VD
    Radiat Prot Dosimetry; 2008; 131(2):217-21. PubMed ID: 18550514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thorium isotopes in autopsy samples from thorium workers.
    Stehney AF; Lucas HF
    Health Phys; 2000 Jan; 78(1):8-14. PubMed ID: 10608304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.