BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 10386377)

  • 1. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing.
    Bidet P; Barbut F; Lalande V; Burghoffer B; Petit JC
    FEMS Microbiol Lett; 1999 Jun; 175(2):261-6. PubMed ID: 10386377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct PCR-Ribotyping of Clostridium difficile.
    Janezic S
    Methods Mol Biol; 2016; 1476():15-21. PubMed ID: 27507330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes.
    Stubbs SL; Brazier JS; O'Neill GL; Duerden BI
    J Clin Microbiol; 1999 Feb; 37(2):461-3. PubMed ID: 9889244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile.
    Bidet P; Lalande V; Salauze B; Burghoffer B; Avesani V; Delmée M; Rossier A; Barbut F; Petit JC
    J Clin Microbiol; 2000 Jul; 38(7):2484-7. PubMed ID: 10878030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Typing of Clostridium difficile strains by PCR-amplification of variable length 16S-23S rDNA spacer regions.
    Gürtler V
    J Gen Microbiol; 1993 Dec; 139(12):3089-97. PubMed ID: 7510324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mosaic nature of intergenic 16S-23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains.
    Sadeghifard N; Gürtler V; Beer M; Seviour RJ
    Appl Environ Microbiol; 2006 Nov; 72(11):7311-23. PubMed ID: 16980415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprint of New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes.
    Gürtler V; Grando D
    J Microbiol Methods; 2013 Dec; 95(3):425-40. PubMed ID: 24050948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.
    Song Y; Kato N; Liu C; Matsumiya Y; Kato H; Watanabe K
    FEMS Microbiol Lett; 2000 Jun; 187(2):167-73. PubMed ID: 10856652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular typing and long-term comparison of clostridium difficile strains by pulsed-field gel electrophoresis and PCR-ribotyping.
    Spigaglia P; Cardines R; Rossi S; Menozzi MG; Mastrantonio P
    J Med Microbiol; 2001 May; 50(5):407-414. PubMed ID: 11339247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes.
    Gürtler V; Grando D
    J Microbiol Methods; 2013 Jun; 93(3):257-72. PubMed ID: 23545446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes.
    Rupnik M; Brazier JS; Duerden BI; Grabnar M; Stubbs SLJ
    Microbiology (Reading); 2001 Feb; 147(Pt 2):439-447. PubMed ID: 11158361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid distinction between Leptonema and Leptospira by PCR amplification of 16S-23S ribosomal DNA spacer.
    Woo TH; Smythe LD; Symonds ML; Norris MA; Dohnt MF; Patel BK
    FEMS Microbiol Lett; 1996 Aug; 142(1):85-90. PubMed ID: 8759793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source of variation detected in ribotyping patterns of Haemophilus influenzae: comparison of traditional ribotyping, PCR-ribotyping and rDNA restriction analysis.
    Jordens JZ; Leaves NI
    J Med Microbiol; 1997 Sep; 46(9):763-72. PubMed ID: 9291888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 16S-23S ribosomal DNA intergenic spacer regions in cellulolytic myxobacteria and differentiation of closely related strains.
    Nguimbi E; Li YZ; Gao BL; Li ZF; Wang B; Wu ZH; Yan BX; Qu YB; Gao PJ
    Syst Appl Microbiol; 2003 Jun; 26(2):262-8. PubMed ID: 12866853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of bacterial strains by thermal gradient gel electrophoresis using non-GC-clamped PCR primers for the 16S-23S rDNA intergenic spacer region.
    Yasuda M; Shiaris MP
    FEMS Microbiol Lett; 2005 Feb; 243(1):235-42. PubMed ID: 15668024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Typing of Staphylococcus aureus by amplification of the 16S-23S rRNA intergenic spacer sequences.
    Dolzani L; Tonin E; Lagatolla C; Monti-Bragadin C
    FEMS Microbiol Lett; 1994 Jun; 119(1-2):167-73. PubMed ID: 8039656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCR ribotyping and arbitrarily primed PCR for typing strains of Clostridium difficile from a Polish maternity hospital.
    Martirosian G; Kuipers S; Verbrugh H; van Belkum A; Meisel-Mikolajczyk F
    J Clin Microbiol; 1995 Aug; 33(8):2016-21. PubMed ID: 7559940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of molecular typing methods applied to Clostridium difficile.
    Kuijper EJ; van den Berg RJ; Brazier JS
    Methods Mol Biol; 2009; 551():159-71. PubMed ID: 19521874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment and analysis of specific DNA patterns in 16S-23S rRNA gene spacer regions for differentiating different bacteria.
    Shang S; Fu J; Dong G; Hong W; Du L; Yu X
    Chin Med J (Engl); 2003 Jan; 116(1):129-33. PubMed ID: 12667405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Carnobacterium species by restriction fragment length polymorphism of the 16S-23S rRNA gene intergenic spacer region and species-specific PCR.
    Rachman C; Kabadjova P; Valcheva R; Prévost H; Dousset X
    Appl Environ Microbiol; 2004 Aug; 70(8):4468-77. PubMed ID: 15294774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.