These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10386730)

  • 21. Normal renal artery spectral Doppler waveform: a closer look.
    Halpern EJ; Deane CR; Needleman L; Merton DA; East SA
    Radiology; 1995 Sep; 196(3):667-73. PubMed ID: 7644627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An integrated system for the non-invasive assessment of vessel wall and hemodynamic properties of large arteries by means of ultrasound.
    Brands PJ; Hoeks AP; Willigers J; Willekes C; Reneman RS
    Eur J Ultrasound; 1999 Jul; 9(3):257-66. PubMed ID: 10657600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation.
    Cloutier G; Qin Z; Durand LG; Teh BG
    IEEE Trans Biomed Eng; 1996 May; 43(5):441-50. PubMed ID: 8849457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intraluminal ultrasound intensity distribution and backscattered Doppler power.
    Thompson RS; Bambi G; Steel R; Tortoli P
    Ultrasound Med Biol; 2004 Nov; 30(11):1485-94. PubMed ID: 15588959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 2D non-invasive ultrasonic method for simultaneous measurement of arterial strain and flow pattern.
    Niu L; Qian M; Song R; Meng L; Liu X; Zheng H
    Clin Physiol Funct Imaging; 2012 Jul; 32(4):323-9. PubMed ID: 22681611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional power Doppler imaging: a phantom study to quantify vessel stenosis.
    Guo Z; Fenster A
    Ultrasound Med Biol; 1996; 22(8):1059-69. PubMed ID: 9004430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurements in children with pulmonary hypertension: a new method for evaluating reactivity: in vitro and clinical studies.
    Weinberg CE; Hertzberg JR; Ivy DD; Kirby KS; Chan KC; Valdes-Cruz L; Shandas R
    Circulation; 2004 Oct; 110(17):2609-17. PubMed ID: 15492299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional reconstruction of the "bright ring" echogenicity from porcine blood upstream in a stenosed tube.
    Paeng DG; Nam KH; Choi MJ; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):880-5. PubMed ID: 19406719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impaired compliance of the intracranial vessels in complicated childhood migraine. Demonstration by transcranial Doppler-sonography--a vascular model approach.
    Rupprecht T; Hofbeck M; Wenzel D
    Ultraschall Med; 2001 Jun; 22(3):122-9. PubMed ID: 11484443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables.
    Morales HG; Bonnefous O
    J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the effect of vessel curvature on Doppler measurements in steady flow.
    Balbis S; Guiot C; Roatta S; Arina R; Todros T
    Ultrasound Med Biol; 2004 May; 30(5):639-45. PubMed ID: 15183230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging.
    Pinter SZ; Lacefield JC
    Ultrasound Med Biol; 2009 Jul; 35(7):1217-28. PubMed ID: 19394752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compound Doppler ultrasound signal simulation for pulsatile carotid arteries with a stenosis.
    Gao L; Zhang Y; Zhou Y; Hu X; Deng L; Zhang K; Cai G; Zhang J
    Biomed Mater Eng; 2016 Aug; 27(2-3):131-48. PubMed ID: 27567770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Power Doppler ultrasound scan imaging of the level of red blood cell aggregation: an in vitro study.
    Allard L; Cloutier G
    J Vasc Surg; 1999 Jul; 30(1):157-68. PubMed ID: 10394166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric radial expansion and contraction of rat carotid artery observed using a high-resolution ultrasound imaging system.
    Nam KH; Bok TH; Jin C; Paeng DG
    Ultrasonics; 2014 Jan; 54(1):233-40. PubMed ID: 23664377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation of the relationship between ultrasound echo enhancement and Doppler frequency shift using a pulsatile arterial flow phantom.
    Petrick J; Zomack M; Schlief R
    Invest Radiol; 1997 Apr; 32(4):225-35. PubMed ID: 9101358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A wall-less vessel phantom for Doppler ultrasound studies.
    Rickey DW; Picot PA; Christopher DA; Fenster A
    Ultrasound Med Biol; 1995; 21(9):1163-76. PubMed ID: 8849831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.