These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10386739)

  • 1. Intercomparison of acoustic output measurements of a diagnostic ultrasound device.
    Beissner K
    Ultrasound Med Biol; 1999 May; 25(4):629-36. PubMed ID: 10386739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic power measurements of Doppler ultrasound devices used for perinatal and infant examinations.
    Rabe H; Grohs B; Schmidt RM; Schloo R; Bömelburg T; Jorch G
    Pediatr Radiol; 1990; 20(4):277-81. PubMed ID: 2186347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of unscanned-mode soft-tissue thermal index for rectangular sources and proposed new indices.
    O'Brien WD; Yang Y; Simpson DG
    Ultrasound Med Biol; 2004 Jul; 30(7):965-72. PubMed ID: 15313328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore.
    Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H
    Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of two methods for determining ultrasonic intensity for medical transducers.
    Shombert DG; Robinson RA
    Ultrasonics; 1983 Sep; 21(5):234-6. PubMed ID: 6612895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone.
    Zhou Y; Zhai L; Simmons R; Zhong P
    J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The output of pulse-echo ultrasound equipment: a survey of powers, pressures and intensities.
    Duck FA; Starritt HC; Aindow JD; Perkins MA; Hawkins AJ
    Br J Radiol; 1985 Oct; 58(694):989-1001. PubMed ID: 3916078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters.
    Coleman AJ; Saunders JE
    Ultrasound Med Biol; 1989; 15(3):213-27. PubMed ID: 2741250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of ultrasonic power using an acoustically absorbing well.
    Sutton Y; Shaw A; Zeqiri B
    Ultrasound Med Biol; 2003 Oct; 29(10):1507-13. PubMed ID: 14597349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass-windowed ultrasound transducers.
    Yddal T; Gilja OH; Cochran S; Postema M; Kotopoulis S
    Ultrasonics; 2016 May; 68():108-19. PubMed ID: 26938326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human brain temperature in vivo: lack of heating during color transcranial Doppler ultrasonography.
    Mariak Z; Krejza J; Swiercz M; Lyson T; Lewko J
    J Neuroimaging; 2001 Jul; 11(3):308-12. PubMed ID: 11462300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Miniaturized Low-Intensity Ultrasound Device for Wearable Medical Therapeutic Applications.
    Jiang X; Ng WT; Chen J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1372-1382. PubMed ID: 31613782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A survey of the acoustic output of ultrasonic Doppler equipment.
    Duck FA; Starritt HC; Anderson SP
    Clin Phys Physiol Meas; 1987 Feb; 8(1):39-49. PubMed ID: 3555969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A survey of the acoustic outputs of diagnostic ultrasound equipment in current clinical use.
    Henderson J; Willson K; Jago JR; Whittingham TA
    Ultrasound Med Biol; 1995; 21(5):699-705. PubMed ID: 8525560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe.
    Karzova MM; Yuldashev PV; Sapozhnikov OA; Khokhlova VA; Cunitz BW; Kreider W; Bailey MR
    J Acoust Soc Am; 2017 Apr; 141(4):2327. PubMed ID: 28464662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic techniques for assessing the Optison destruction threshold.
    Porter TM; Smith DA; Holland CK
    J Ultrasound Med; 2006 Dec; 25(12):1519-29. PubMed ID: 17121946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.