BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10387000)

  • 1. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation.
    Mitchell DC; Litman BJ
    Biochemistry; 1999 Jun; 38(24):7617-23. PubMed ID: 10387000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH; Gibson SK; Liebman PA
    Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ethanol and osmotic stress on receptor conformation. Reduced water activity amplifies the effect of ethanol on metarhodopsin II formation.
    Mitchell DC; Litman BJ
    J Biol Chem; 2000 Feb; 275(8):5355-60. PubMed ID: 10681509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium.
    Mitchell DC; Straume M; Litman BJ
    Biochemistry; 1992 Jan; 31(3):662-70. PubMed ID: 1731921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1999 Aug; 38(34):11103-14. PubMed ID: 10460166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay.
    Straume M; Litman BJ
    Biochemistry; 1988 Oct; 27(20):7723-33. PubMed ID: 3207703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the differential effects of DHA and DPA on the early events in visual signal transduction.
    Mitchell DC; Niu SL; Litman BJ
    Chem Phys Lipids; 2012 May; 165(4):393-400. PubMed ID: 22405878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S; Mielke T; Heyn MP
    Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ethanol on metarhodopsin II formation is potentiated by phospholipid polyunsaturation.
    Mitchell DC; Litman BJ
    Biochemistry; 1994 Nov; 33(43):12752-6. PubMed ID: 7947679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling.
    Angel TE; Kraft PC; Dratz EA
    Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of digitonin on the rhodopsin meta I-meta II equilibrium.
    Szundi I; Lewis JW; Kliger DS
    Photochem Photobiol; 2005; 81(4):866-73. PubMed ID: 15819603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ; Brown MF
    Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of the farnesyl moiety in visual signalling.
    McCarthy NE; Akhtar M
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of n-alkanols on lipid bilayer hydration.
    Ho C; Stubbs CD
    Biochemistry; 1997 Sep; 36(35):10630-7. PubMed ID: 9271493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phosphorylation on receptor conformation: the metarhodopsin I in equilibrium with metarhodopsin II equilibrium in multiply phosphorylated rhodopsin.
    Mitchell DC; Kibelbek J; Litman BJ
    Biochemistry; 1992 Sep; 31(35):8107-11. PubMed ID: 1525152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin.
    Pulvermüller A; Maretzki D; Rudnicka-Nawrot M; Smith WC; Palczewski K; Hofmann KP
    Biochemistry; 1997 Jul; 36(30):9253-60. PubMed ID: 9230059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K; Morizumi T; Yamashita T; Shichida Y
    Biochemistry; 2010 Feb; 49(4):736-41. PubMed ID: 20030396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.
    Wang Y; Botelho AV; Martinez GV; Brown MF
    J Am Chem Soc; 2002 Jul; 124(26):7690-701. PubMed ID: 12083922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.