BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

709 related articles for article (PubMed ID: 10387016)

  • 1. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation.
    Horsnell WG; Steel GJ; Morgan A
    Biochemistry; 2002 Apr; 41(16):5230-5. PubMed ID: 11955072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homotypic vacuolar fusion mediated by t- and v-SNAREs.
    Nichols BJ; Ungermann C; Pelham HR; Wickner WT; Haas A
    Nature; 1997 May; 387(6629):199-202. PubMed ID: 9144293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual control of membrane fission and fusion proteins.
    Peters C; Baars TL; Bühler S; Mayer A
    Cell; 2004 Nov; 119(5):667-78. PubMed ID: 15550248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion.
    Müller JM; Rabouille C; Newman R; Shorter J; Freemont P; Schiavo G; Warren G; Shima DT
    Nat Cell Biol; 1999 Oct; 1(6):335-40. PubMed ID: 10559959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion.
    Ungermann C; Nichols BJ; Pelham HR; Wickner W
    J Cell Biol; 1998 Jan; 140(1):61-9. PubMed ID: 9425154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation.
    Müller O; Bayer MJ; Peters C; Andersen JS; Mann M; Mayer A
    EMBO J; 2002 Feb; 21(3):259-69. PubMed ID: 11823419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein.
    May AP; Misura KM; Whiteheart SW; Weis WI
    Nat Cell Biol; 1999 Jul; 1(3):175-82. PubMed ID: 10559905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis.
    Steel GJ; Harley C; Boyd A; Morgan A
    Mol Biol Cell; 2000 Apr; 11(4):1345-56. PubMed ID: 10749934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A handle on NSF.
    Owen DJ; Schiavo G
    Nat Cell Biol; 1999 Sep; 1(5):E127-8. PubMed ID: 10559954
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of alpha-soluble N-ethylmaleimide-sensitive fusion attachment protein in alveolar type II cells: implications in lung surfactant secretion.
    Abonyo BO; Wang P; Narasaraju TA; Rowan WH; McMillan DH; Zimmerman UJ; Liu L
    Am J Respir Cell Mol Biol; 2003 Sep; 29(3 Pt 1):273-82. PubMed ID: 12663329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion.
    Muller JM; Shorter J; Newman R; Deinhardt K; Sagiv Y; Elazar Z; Warren G; Shima DT
    J Cell Biol; 2002 Jun; 157(7):1161-73. PubMed ID: 12070132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective stimulation of the D1 ATPase domain of N-ethylmaleimide-sensitive fusion protein (NSF) by soluble NSF attachment proteins.
    Steel GJ; Morgan A
    FEBS Lett; 1998 Feb; 423(1):113-6. PubMed ID: 9506852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small-molecule competitive inhibitor of phosphatidic acid binding by the AAA+ protein NSF/Sec18 blocks the SNARE-priming stage of vacuole fusion.
    Sparks RP; Arango AS; Starr ML; Aboff ZL; Hurst LR; Rivera-Kohr DA; Zhang C; Harnden KA; Jenkins JL; Guida WC; Tajkhorshid E; Fratti RA
    J Biol Chem; 2019 Nov; 294(46):17168-17185. PubMed ID: 31515268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF).
    Haas A; Wickner W
    EMBO J; 1996 Jul; 15(13):3296-305. PubMed ID: 8670830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of vesicular membrane-bound alpha-SNAP and NSF in adrenal chromaffin cells.
    Banaschewski C; Höhne-Zell B; Ovtscharoff W; Gratzl M
    Biochemistry; 1998 Nov; 37(47):16719-27. PubMed ID: 9843441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles.
    Mayer A; Wickner W; Haas A
    Cell; 1996 Apr; 85(1):83-94. PubMed ID: 8620540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperation of Sly1/SM-family protein and sec18/NSF of Saccharomyces cerevisiae in disassembly of cis-SNARE membrane-protein complexes.
    Kosodo Y; Noda Y; Adachi H; Yoda K
    Biosci Biotechnol Biochem; 2003 Feb; 67(2):448-50. PubMed ID: 12729020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p47 is a cofactor for p97-mediated membrane fusion.
    Kondo H; Rabouille C; Newman R; Levine TP; Pappin D; Freemont P; Warren G
    Nature; 1997 Jul; 388(6637):75-8. PubMed ID: 9214505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putative fusogenic activity of NSF is restricted to a lipid mixture whose coalescence is also triggered by other factors.
    Brügger B; Nickel W; Weber T; Parlati F; McNew JA; Rothman JE; Söllner T
    EMBO J; 2000 Mar; 19(6):1272-8. PubMed ID: 10716927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.