These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

705 related articles for article (PubMed ID: 10387016)

  • 1. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation.
    Horsnell WG; Steel GJ; Morgan A
    Biochemistry; 2002 Apr; 41(16):5230-5. PubMed ID: 11955072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homotypic vacuolar fusion mediated by t- and v-SNAREs.
    Nichols BJ; Ungermann C; Pelham HR; Wickner WT; Haas A
    Nature; 1997 May; 387(6629):199-202. PubMed ID: 9144293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual control of membrane fission and fusion proteins.
    Peters C; Baars TL; Bühler S; Mayer A
    Cell; 2004 Nov; 119(5):667-78. PubMed ID: 15550248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion.
    Müller JM; Rabouille C; Newman R; Shorter J; Freemont P; Schiavo G; Warren G; Shima DT
    Nat Cell Biol; 1999 Oct; 1(6):335-40. PubMed ID: 10559959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion.
    Ungermann C; Nichols BJ; Pelham HR; Wickner W
    J Cell Biol; 1998 Jan; 140(1):61-9. PubMed ID: 9425154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation.
    Müller O; Bayer MJ; Peters C; Andersen JS; Mann M; Mayer A
    EMBO J; 2002 Feb; 21(3):259-69. PubMed ID: 11823419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein.
    May AP; Misura KM; Whiteheart SW; Weis WI
    Nat Cell Biol; 1999 Jul; 1(3):175-82. PubMed ID: 10559905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis.
    Steel GJ; Harley C; Boyd A; Morgan A
    Mol Biol Cell; 2000 Apr; 11(4):1345-56. PubMed ID: 10749934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A handle on NSF.
    Owen DJ; Schiavo G
    Nat Cell Biol; 1999 Sep; 1(5):E127-8. PubMed ID: 10559954
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of alpha-soluble N-ethylmaleimide-sensitive fusion attachment protein in alveolar type II cells: implications in lung surfactant secretion.
    Abonyo BO; Wang P; Narasaraju TA; Rowan WH; McMillan DH; Zimmerman UJ; Liu L
    Am J Respir Cell Mol Biol; 2003 Sep; 29(3 Pt 1):273-82. PubMed ID: 12663329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion.
    Muller JM; Shorter J; Newman R; Deinhardt K; Sagiv Y; Elazar Z; Warren G; Shima DT
    J Cell Biol; 2002 Jun; 157(7):1161-73. PubMed ID: 12070132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective stimulation of the D1 ATPase domain of N-ethylmaleimide-sensitive fusion protein (NSF) by soluble NSF attachment proteins.
    Steel GJ; Morgan A
    FEBS Lett; 1998 Feb; 423(1):113-6. PubMed ID: 9506852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small-molecule competitive inhibitor of phosphatidic acid binding by the AAA+ protein NSF/Sec18 blocks the SNARE-priming stage of vacuole fusion.
    Sparks RP; Arango AS; Starr ML; Aboff ZL; Hurst LR; Rivera-Kohr DA; Zhang C; Harnden KA; Jenkins JL; Guida WC; Tajkhorshid E; Fratti RA
    J Biol Chem; 2019 Nov; 294(46):17168-17185. PubMed ID: 31515268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF).
    Haas A; Wickner W
    EMBO J; 1996 Jul; 15(13):3296-305. PubMed ID: 8670830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of vesicular membrane-bound alpha-SNAP and NSF in adrenal chromaffin cells.
    Banaschewski C; Höhne-Zell B; Ovtscharoff W; Gratzl M
    Biochemistry; 1998 Nov; 37(47):16719-27. PubMed ID: 9843441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles.
    Mayer A; Wickner W; Haas A
    Cell; 1996 Apr; 85(1):83-94. PubMed ID: 8620540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperation of Sly1/SM-family protein and sec18/NSF of Saccharomyces cerevisiae in disassembly of cis-SNARE membrane-protein complexes.
    Kosodo Y; Noda Y; Adachi H; Yoda K
    Biosci Biotechnol Biochem; 2003 Feb; 67(2):448-50. PubMed ID: 12729020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p47 is a cofactor for p97-mediated membrane fusion.
    Kondo H; Rabouille C; Newman R; Levine TP; Pappin D; Freemont P; Warren G
    Nature; 1997 Jul; 388(6637):75-8. PubMed ID: 9214505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putative fusogenic activity of NSF is restricted to a lipid mixture whose coalescence is also triggered by other factors.
    Brügger B; Nickel W; Weber T; Parlati F; McNew JA; Rothman JE; Söllner T
    EMBO J; 2000 Mar; 19(6):1272-8. PubMed ID: 10716927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.