BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 10387055)

  • 1. Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation.
    Yang G; Lin T; Karam J; Konigsberg WH
    Biochemistry; 1999 Jun; 38(25):8094-101. PubMed ID: 10387055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activity of selected RB69 DNA polymerase mutants can be restored by manganese ions: the existence of alternative metal ion ligands used during the polymerization cycle.
    Zakharova E; Wang J; Konigsberg W
    Biochemistry; 2004 Jun; 43(21):6587-95. PubMed ID: 15157091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base selectivity is impaired by mutants that perturb hydrogen bonding networks in the RB69 DNA polymerase active site.
    Yang G; Wang J; Konigsberg W
    Biochemistry; 2005 Mar; 44(9):3338-46. PubMed ID: 15736944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved Tyr residue is required for sugar selectivity in a Pol alpha DNA polymerase.
    Yang G; Franklin M; Li J; Lin TC; Konigsberg W
    Biochemistry; 2002 Aug; 41(32):10256-61. PubMed ID: 12162740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues at the carboxy terminus of T4 DNA polymerase are important determinants for interaction with the polymerase accessory proteins.
    Goodrich LD; Lin TC; Spicer EK; Jones C; Konigsberg WH
    Biochemistry; 1997 Aug; 36(34):10474-81. PubMed ID: 9265627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of the kinetics of finger domain mutants in RB69 DNA polymerase with its structure.
    Yang G; Franklin M; Li J; Lin TC; Konigsberg W
    Biochemistry; 2002 Feb; 41(8):2526-34. PubMed ID: 11851399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid residues involved in determining the processivity of the 3'-5' exonuclease activity in a family B DNA polymerase from the thermoacidophilic archaeon Sulfolobus solfataricus.
    Pisani FM; De Felice M; Rossi M
    Biochemistry; 1998 Oct; 37(42):15005-12. PubMed ID: 9778379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different behaviors in vivo of mutations in the beta hairpin loop of the DNA polymerases of the closely related phages T4 and RB69.
    Trzemecka A; PÅ‚ochocka D; Bebenek A
    J Mol Biol; 2009 Jun; 389(5):797-807. PubMed ID: 19409904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site.
    Tanguy Le Gac N; Delagoutte E; Germain M; Villani G
    J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between the T4 helicase-loading protein (gp59) and the DNA polymerase (gp43): a locking mechanism to delay replication during replisome assembly.
    Xi J; Zhuang Z; Zhang Z; Selzer T; Spiering MM; Hammes GG; Benkovic SJ
    Biochemistry; 2005 Feb; 44(7):2305-18. PubMed ID: 15709743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a fluorescent cytosine analogue tC(o) to probe the effect of the Y567 to Ala substitution on the preinsertion steps of dNMP incorporation by RB69 DNA polymerase.
    Xia S; Beckman J; Wang J; Konigsberg WH
    Biochemistry; 2012 Jun; 51(22):4609-17. PubMed ID: 22616982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of translesion DNA synthesis catalyzed by the bacteriophage T4 exonuclease-deficient DNA polymerase.
    Berdis AJ
    Biochemistry; 2001 Jun; 40(24):7180-91. PubMed ID: 11401565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase.
    Wu P; Nossal N; Benkovic SJ
    Biochemistry; 1998 Oct; 37(42):14748-55. PubMed ID: 9778349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for dNTP binding of human immunodeficiency virus type 1 reverse transcriptase in viral mutagenesis.
    Weiss KK; Chen R; Skasko M; Reynolds HM; Lee K; Bambara RA; Mansky LM; Kim B
    Biochemistry; 2004 Apr; 43(15):4490-500. PubMed ID: 15078095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.