These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 10387055)
1. Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation. Yang G; Lin T; Karam J; Konigsberg WH Biochemistry; 1999 Jun; 38(25):8094-101. PubMed ID: 10387055 [TBL] [Abstract][Full Text] [Related]
2. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity. Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692 [TBL] [Abstract][Full Text] [Related]
3. The activity of selected RB69 DNA polymerase mutants can be restored by manganese ions: the existence of alternative metal ion ligands used during the polymerization cycle. Zakharova E; Wang J; Konigsberg W Biochemistry; 2004 Jun; 43(21):6587-95. PubMed ID: 15157091 [TBL] [Abstract][Full Text] [Related]
4. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720 [TBL] [Abstract][Full Text] [Related]
5. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997 [TBL] [Abstract][Full Text] [Related]
6. Base selectivity is impaired by mutants that perturb hydrogen bonding networks in the RB69 DNA polymerase active site. Yang G; Wang J; Konigsberg W Biochemistry; 2005 Mar; 44(9):3338-46. PubMed ID: 15736944 [TBL] [Abstract][Full Text] [Related]
7. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases. Einolf HJ; Schnetz-Boutaud N; Guengerich FP Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338 [TBL] [Abstract][Full Text] [Related]
8. A conserved Tyr residue is required for sugar selectivity in a Pol alpha DNA polymerase. Yang G; Franklin M; Li J; Lin TC; Konigsberg W Biochemistry; 2002 Aug; 41(32):10256-61. PubMed ID: 12162740 [TBL] [Abstract][Full Text] [Related]
9. Residues at the carboxy terminus of T4 DNA polymerase are important determinants for interaction with the polymerase accessory proteins. Goodrich LD; Lin TC; Spicer EK; Jones C; Konigsberg WH Biochemistry; 1997 Aug; 36(34):10474-81. PubMed ID: 9265627 [TBL] [Abstract][Full Text] [Related]
10. Correlation of the kinetics of finger domain mutants in RB69 DNA polymerase with its structure. Yang G; Franklin M; Li J; Lin TC; Konigsberg W Biochemistry; 2002 Feb; 41(8):2526-34. PubMed ID: 11851399 [TBL] [Abstract][Full Text] [Related]
11. Amino acid residues involved in determining the processivity of the 3'-5' exonuclease activity in a family B DNA polymerase from the thermoacidophilic archaeon Sulfolobus solfataricus. Pisani FM; De Felice M; Rossi M Biochemistry; 1998 Oct; 37(42):15005-12. PubMed ID: 9778379 [TBL] [Abstract][Full Text] [Related]
12. Different behaviors in vivo of mutations in the beta hairpin loop of the DNA polymerases of the closely related phages T4 and RB69. Trzemecka A; PÅ‚ochocka D; Bebenek A J Mol Biol; 2009 Jun; 389(5):797-807. PubMed ID: 19409904 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. Rodriguez AC; Park HW; Mao C; Beese LS J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752 [TBL] [Abstract][Full Text] [Related]
14. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site. Tanguy Le Gac N; Delagoutte E; Germain M; Villani G J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066 [TBL] [Abstract][Full Text] [Related]
16. Interaction between the T4 helicase-loading protein (gp59) and the DNA polymerase (gp43): a locking mechanism to delay replication during replisome assembly. Xi J; Zhuang Z; Zhang Z; Selzer T; Spiering MM; Hammes GG; Benkovic SJ Biochemistry; 2005 Feb; 44(7):2305-18. PubMed ID: 15709743 [TBL] [Abstract][Full Text] [Related]
17. Using a fluorescent cytosine analogue tC(o) to probe the effect of the Y567 to Ala substitution on the preinsertion steps of dNMP incorporation by RB69 DNA polymerase. Xia S; Beckman J; Wang J; Konigsberg WH Biochemistry; 2012 Jun; 51(22):4609-17. PubMed ID: 22616982 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of translesion DNA synthesis catalyzed by the bacteriophage T4 exonuclease-deficient DNA polymerase. Berdis AJ Biochemistry; 2001 Jun; 40(24):7180-91. PubMed ID: 11401565 [TBL] [Abstract][Full Text] [Related]
19. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase. Wu P; Nossal N; Benkovic SJ Biochemistry; 1998 Oct; 37(42):14748-55. PubMed ID: 9778349 [TBL] [Abstract][Full Text] [Related]
20. A role for dNTP binding of human immunodeficiency virus type 1 reverse transcriptase in viral mutagenesis. Weiss KK; Chen R; Skasko M; Reynolds HM; Lee K; Bambara RA; Mansky LM; Kim B Biochemistry; 2004 Apr; 43(15):4490-500. PubMed ID: 15078095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]